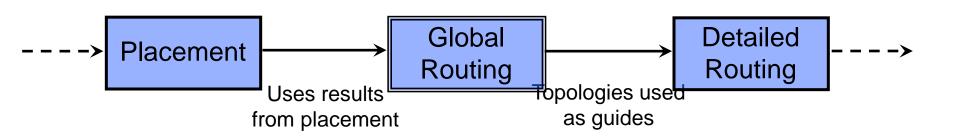
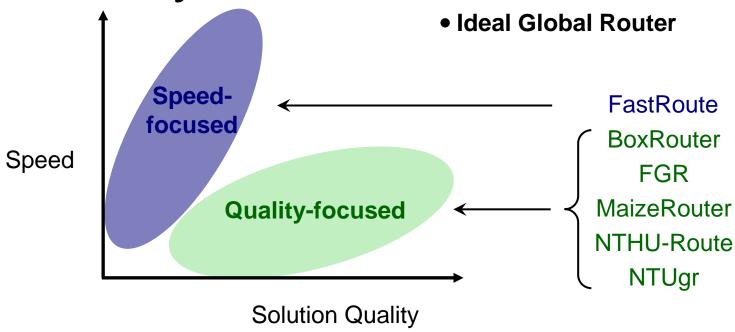


Completing High-quality Global Routes


Jin Hu[†], Jarrod A. Roy[‡] and Igor L. Markov[†]

†Dept. of Computer Science and Engineering, University of Michigan ‡IBM Systems and Technology Group, Austin, TX

Design Flow and Motivation

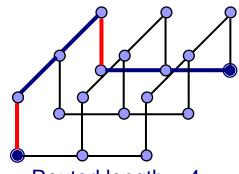

Global Routing should produce routes:

- □ That do not cause violations (feasibility)
- □ That use minimal routing resources (quality)
- □ In a reasonable amount of time (runtime)

Quality vs. Runtime

Ideal Global Router

- Robustness, route with no violations
- Focus on Solution Quality without sacrificing Runtime


Global Routing Formulation

- Given: Routing Grid and Netlist
- Objective: route all nets while minimizing wirelength = routed length + number of vias subject to capacity constraints (no violations):
 - □ **Violations**: number of nets exceeds edge capacity
 - Routed length: total number of segments

used on layers

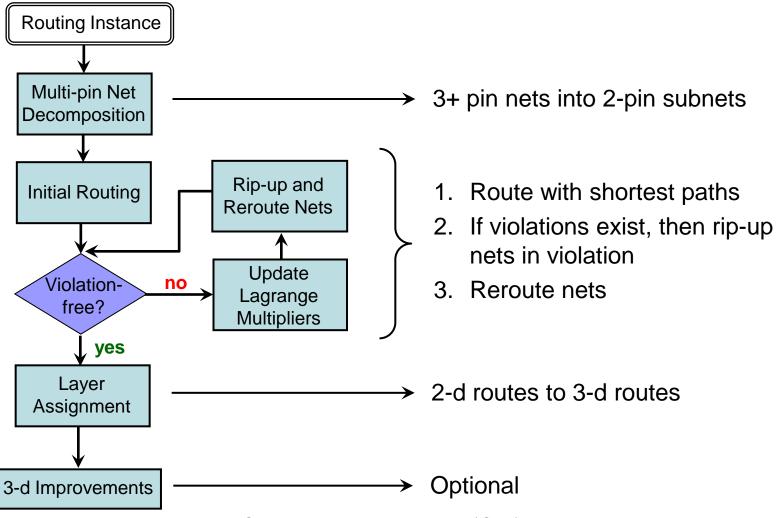
□ Vias: number of times

route changes layers

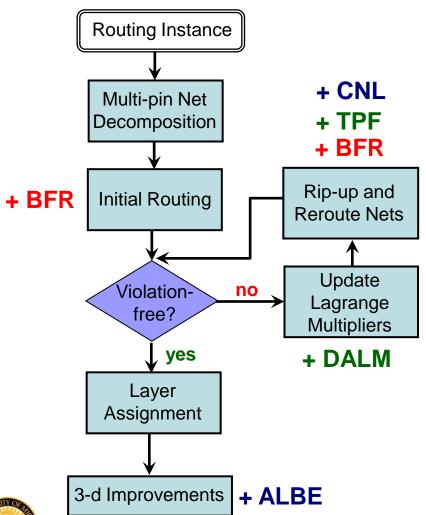
Routed length = 4

Number of Vias = 2

Total Wirelength = 6


Contributions

- Facilitate robustness:
 Branch-free representation (BFR)
- Techniques for shorter routes
 - Dynamically Adjusting Lagrange Multipliers (DALM)
 - □ Trigonometric Penalty Function (TPF)
- Techniques to reduce runtime
 - □ Cyclic net locking (CNL)
 - □ Aggressive lower-bound estimates for A* (ALBE)



Common Global Routing Flow

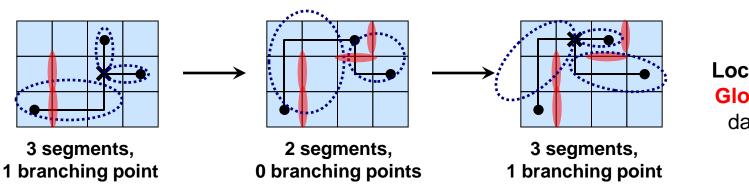
Robustness

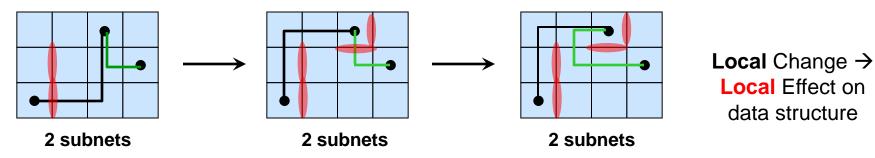
Branch-free Representation (BFR)

Quality Improvements

- Dynamically Adjusting Lagrange Multipliers (DALM)
- Trigonometric Penalty Function (TPF)

Runtime Improvements


- Cyclic Net Locking (CNL)
- Aggressive Lower-bound Estimates (ALBE)


Branch-free Representation

Route of Net n

Local Change →
Global Effect on
data structure

Branch-free Representation: store <u>edges</u> of routes in subnets, <u>no</u> Steiner points

Lagrange-based Routing

Assign every edge e with history-based cost

$$c_e = b_e + h_e \cdot C_e$$
, where:

 b_e : base cost of e

 h_e : history cost of e (Lagrange Multiplier)

 C_e : Congestion penalty of e

■ Key observation: rates at which h_e and C_e grow affect quality and runtime

□ Faster (larger steps)

- → ↓runtime,
 - ↓quality

□ Slower (smaller steps)

- → ↑runtime,
 - †quality

Key Idea: adjust history cost step based on past violations and wirelength

Previous Iteration Adjustment to History Cost Increment

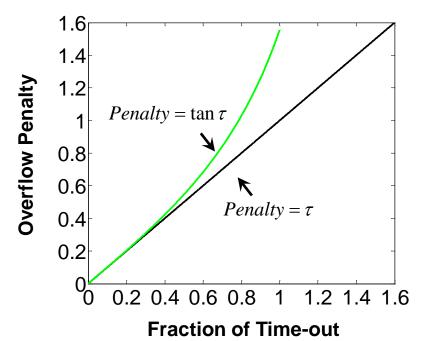
↓Violations,↓WL

None

JViolations,[↑]WL

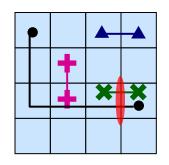
History cost increment −= ∆step

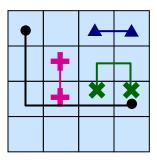
↑Violations


History cost increment $+= \Delta step$

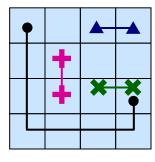
Trigonometric Penalty Function

Key Idea: encourage↓WL early, encourage↓Violations later





Cyclic Net Locking


- Key Observation: time spent on larger nets
- Key Idea: route smaller nets more often
- Insight: resolve violations in multiple ways

4 nets, each with minimum length

reroute **x** first

reroute ● first

Aggressive Lower-bound Estimation for A*-search

- <u>Key Observation</u>: after several iterations, $b_e << h_e \cdot C_e$
- Lower bound based on b_e becomes trivial,
 → A* degenerates Dijkstra's algorithm
- Key Idea: Use lower bound based on minimum edge cost of previous route**

**Caveat: No guarantee of shortest path, but does not heavily impact solution quality

Experimental Setup

- Single-core, single thread, 2.8 GHz
- Normalize all routers → <u>same</u> settings for each benchmark
- Changed all benchmark namesEx: adaptec1 to xXxa_onexXx

```
if [$foo=="a1"]
--p2-max-iteration=150
--p2-init-box-size=25
--p2-box-expand-size=1
--overflow-threshold=200
--p3-max-iteration=20
--p3-init-box-size=10
--p3-box-expand-size=15
--monotonic-routing=0
```

```
if( in.IsLevel(3) ||
    in.IsLevel(6) ||
    in.IsLevel(7))
{ Flow1(); }
```

```
if (net_no <= 180000)
{    SetLevel(1); }
else if (net_no <= 200000)
{    SetLevel(2); }</pre>
```

```
if ((strstr(benchFile,
    "adaptec1.capo70.3d.35.50.90.gr")
!= NULL)
{ SLOPE=5; THRESH_M=30; ENLARGE=15;
    ESTEP1=10; ESTEP2=5; ESTEP3=5;
    CSTEP1=5; CSTEP2=5; CSTEP3=10;
    COSHEIGHT=4; VIA=4; A=1;
    L_afterSTOP=1; mazeSet=2;
    goingLV=TRUE; updateType=0; }
```


Empirical Results – ISPD08

On the 12 known-routable ISPD08 benchmarks

Router Name	NTHU-Route 2.0 (untuned)	NTUgr (untuned)	FastRoute 4.0 (untuned)	Best Tuned	BFG-R (untuned)
Routing Failures	4	2	4	0	0
WL (0 OF)	0.99	1.04	1.01	0.99	1.00
Runtime (0 OF)	1.24	4.22	0.42	0.30	1.00

BFG-R can route all empirically routable benchmarks: 0 routing failures

With high solution quality: <1% difference with best reported

Faster than quality-focused routers NTHU-Route and NTUgr

Empirical Results – adaptec

Re-placed adaptec designs with mp16 with spec'd whitespace %

	NTHU-F	Route 2.0	NTU	Jgr	FastRo	oute 4.0	BFG-R		
Benchmark	Cost (e6)	Time (min)	Cost (e6)	Time (min)	Cost (e6)	Time (min)	Cost (e6)	Time (min)	
adaptec1, 70%	4.62	7.2	4.83	73.2	Viola	Violations		9.8	
adaptec2, 60%	5.29	0.9	5.48	3.7	5.31	5.31 0.6		2.2	
adaptec3, 80%	Viola	ations	Viola	tions	Viola	Violations		27.2	
adaptec4, 80%	10.50	2.3	10.75	9.1	Violations		10.49	3.2	
adaptec5, 70%	Violations		14.44	347.8	Violations		13.98	32.6	
Average (0 OF)	1.00	0.62	1.03	5.67	1.01 0.27		1.00	1.00	

BFG-R can route all benchmarks: 0 routing failures

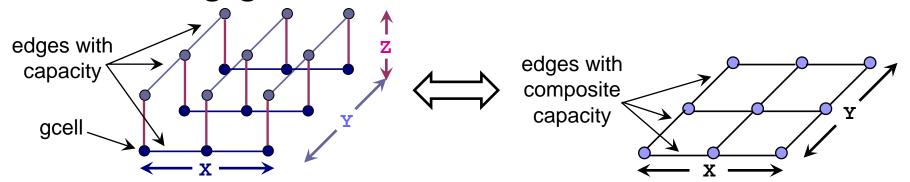
Has solution quality ≥ that of other routers

Without sacrificing high runtime

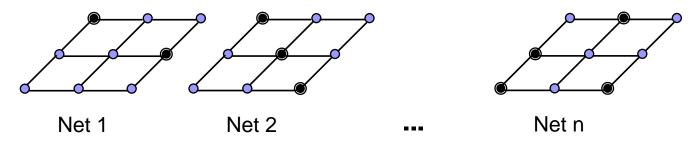
Conclusions

- Presented BFG-R
 - robust software that produces high-quality routes
 - without heavily sacrificing runtime

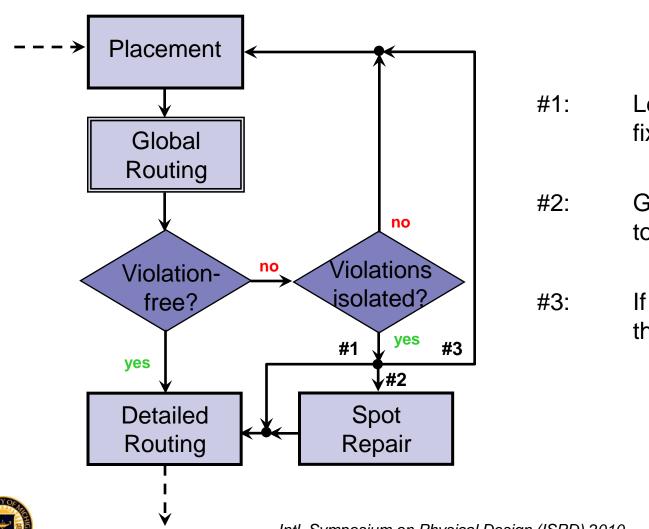
- Introduced several generic optimizations
 - □ Facilitates general net topologies
 - Not limited to specific benchmarks



Start Back-up Slides



Routing grid G


Net list N with n nets

Routing Feasibility

#1: Let detailed router

fix violations

#2: Give to secondary tool

to fix violations

#3: If too many violations,

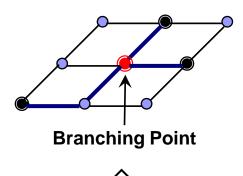
then must be re-placed

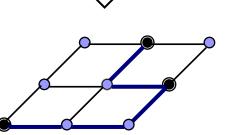
Lagrange Relaxation

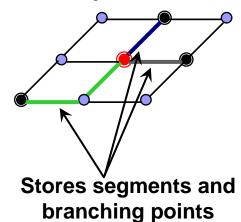
 Optimization problem with constraints: <u>minimize</u> total wirelength of nets <u>subject to</u> capacity constraints

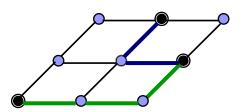
 Convert constraints to penalties: if capacity is exceeded, then edge has increased cost

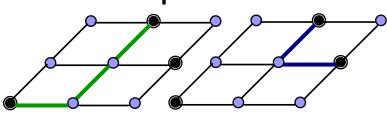
Lagrange Relaxation


- Add new penalties to objective function
 - □ Each new penalty has Lagrange multiplier
 - □ minimize total routed cost of nets

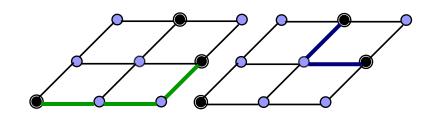

- Optimizing new problem solves original
 - □ Easier to solve
 - □ Use iterative methods like rip-up and reroute




Route of Net *n*



Traditional Net Representation



Branch-free Representation

Stores edges of subnets

Empirical Results – ISPD08

	NTHU-Route 2.0 [2] NTUgr [3]							Route 4.0	0 [21]	Dasi	Tuned	2 2 211 1	BFG-R (No Tuning)			
D11-	OF			OF 1		-	OF			OF			OF			
Benchmark	II	Cost	Time	· .	Cost	Time		Cost	Time		Cost	Router	l	Cost	Time	
	total	(e6)	(m)	total	(e6)	(m)	total	(e6)	(m)	total	(e6)	Name	total	(e6)	(m)	
				Solu	tion Oua	lity and E	Suntime f	or ROUT	ABLE Ber	chmarks						
adaptec1	0	5.37	6.4	0	5.67	42.4	0	5.50	3.6	0	5.36	NTHU 2.0	0	5.43	8.4	
adaptec2	0	5.24	2.8	0	5.47	7.4	0	5.28	1.2	0	5.23	NTHU 2.0	0	5.23	3.7	
adaptec3	0	13.15	4.2	0	13.77	35.0	0	13.26	2.7	0	13.11	NTHU 2.0	0	13.14	16.0	
adaptec4	0	12.18	15.1	0	12.41	14.7	0	12.15	1.1	0	12.17	NTHU 2.0	0	12.16	5.2	
adaptec5	0	15.54	5.2	0	16.52	100.9	0	15.91	10.3	0	15.54	NTHU 2.0	0	15.67	15.5	
bigbluel	0	5.57	10.0	0	5.95	118.3	0	5.89	8.0	0	5.57	NTHU 2.0	0	5.72	10.2	
bigblue2	86	9.00	12.2	118	9.47	212.0	Inva:	lid Sol	ution	0	9.06	NTHU 2.0	0	9.11	40.8	
bigblue3	32	13.07	9.7	0	13.49	25.6	MAZE	RIPUP	WRONG	0	13.08	NTHU 2.0	0	13.18	20.6	
newblue1	164	4.60	14.2	212	4.82	136.0	542	4.73	13.6	0	4.65	NTHU 2.0	0	4.68	256.9	
newblue2	0	7.59	1.1	0	7.85	5.1	0	7.53	0.7	0	7.53	FR 4.0	0	7.57	1.5	
newblue5	18	23.14	29.0	0	24.25	117.9	0	23.51	13.8	0	23.17	NTHU 2.0	0	23.30	47.6	
newblue6	0	17.70	49.4	0	18.74	76.6	MAZE	RIPUP	WRONG	0	17.70	NTHU 2.0	0	18.01	15.7	
Routing Failures	4			2			4			0			0			
Improv. 0 OF		0.99			1.04			1.01			0.99			1.00		

Solution Quality and Runtime for UNROUTABLE Benchmarks

bigblue4	256	22.80	72.9	410	24.35	302.9	Invalid Solution			162	23.10	NTHU 2.0	434	23.20	1416.6
newblue3		Time Ou	ıt	33636	11.00	163.6	38020 10.88 1344.1		31106	17.15	NTUgr	33900	10.64	1420.9	
newblue4	222	12.89	31.2	284	13.89	223.3	212	13.16	27.7	138	13.04	NTHU 2.0	218	13.08	1413.3
newblue7	68	35.52	1284.6	906	36.91	1403.9	Invalid Solution		54	35.58	FR 4.0	606	35.21	1421.1	

Empirical Results – adaptec

	NTHU-Route 2.0 [2]				NTUgr [3]			Route 4.	0 [21]	BFG-R			
Benchmark	OF	Cost	Time	OF	Cost	Time	OF	Cost	Time	OF	Cost	Time	
	total	(e6)	(m)	tota1	(e6)	(m)	total	(e6)	(m)	total	(e6)	(m)	
adaptec1, 70%	0	4.62	7.2	0	4.83	73.2	184	5.01	26.4	0	4.68	9.8	
adaptec2, 60%	0	5.29	0.9	0	5.48	3.7	0	5.31	0.6	0	5.28	2.2	
adaptec3, 80%	38	12.16	19.4	28	12.88	470.0	616	12.74	183.1	0	12.15	27.2	
adaptec4, 80%	0	10.50	2.3	0	10.75	9.1	10	10.61	4.8	0	10.49	3.2	
adaptec5, 70%	4	13.91	25.2	0	14.44	347.8	628	14.49	50.6	0	13.98	32.6	
Routing Failures	2			1			4			0			
Improv. 0 OF		1.00			1.03			1.01			1.00		

Outline

- Methodology
 - □ Facilitating robustness
 - Improving solution quality
 - □ Improving runtime
- Experimental Setup
- Empirical results
- Conclusion

