FOARS: FLUTE Based Obstacle-
Avoiding Rectilinear Steiner Tree

!'_ Construction

Gaurav Ajwani and Chris Chu
lowa State University

Wal-Kel Mak
National Tsing Hua University

* OARSMT Problem Formulation

Obstacle-avoiding rectilinear Steiner minimal tree

s |nput
= A set of pins
= A set of rectilinear obstacles

s Output
= A rectilinear Steiner tree
=« Minimizing total wirelength
« Connecting all pins
« Avoiding all obstacles

D
o |

= Applications In routing, wirelength estimation, etc.
= NP-complete
= More than ten heuristics proposed since 2005

i Our Contributions

= An OARSMT algorithm called FOARS (FLUTE Based
Obstacle-Avoiding Rectilinear Steiner Tree)
= Outstanding wirelength
= Efficient

= Scalable: O(n log n) time
= Where n = # pins + # obstacle corners

= New ldeas:
= Approach to leverage FLUTE for OARSMT construction
= An efficient obstacle-aware partitioning technique

= Algorithm to construct obstacle-avoiding spanning graph
with good properties

i If There Is No Obstacle

= Rectilinear Steiner Minimal Tree (RSMT) problem

s FLUTE -- Fast LookUp Table Estimation [TCAD 08]
= Extremely fast and accurate
= More accurate than BI1S heuristic

= Almost as fast as minimum spanning tree
construction

= Can we leverage FLUTE for OARSMT construction?

Obstacle-Aware FLUTE (OA-FLUTE)

= // P =set of pins, OB = set of obstacles
Function OA-FLUTE(P, OB)

T = FLUTE(P) // ignore obstacles
If (T overlaps with obstacle)

Partition into several sub-problems P,,...,P;

T = OA-FLUTE(P,, OB) + ... + OA-FLUTE(P,, OB)
Return T

s Two possible types of overlap:
1. An edge is completely blocked by an obstacle

2. A Steiner node is on top of an obstacle

* Type 1: Edge over Obstacle

=> =>

= Partition pins according to the overlapping edge
= Include obstacle corners

= Apply OA-FLUTE recursively on sub-problems to
obtain sub-trees

= Merge sub-trees and exclude corners

* Type 2: Steiner Node over Obstacle

= Partition pins according to the overlapping Steiner
node

= Include obstacle corners

= Apply OA-FLUTE recursively on sub-problems to
obtain sub-trees

= Merge sub-trees and exclude corners

i Problems with OA-FLUTE

= Does not work well if:
1. Routing region is too cluttered by obstacles
Reason: Partitioning based on initial tree
which ignores obstacles
2. There are too many pins
Reason: Performance of FLUTE starts to deteriorate
for more than a hundred pins

= Need a better way to partition the pins

s Then OA-FLUTE can be called to handle each sub-
problem

i FOARS Overview

1. Partitioning Pins
= Obstacle-Avoiding Spanning Graph (OASG)
= Minimum Terminal Spanning Tree (MTST)
= Obstacle Penalized Minimum Spanning Tree (OPMST)
= Partition according to OPMST to obtain sub-problems

2. Fixing tree topology and Steiner node locations
= Applying OA-FLUTE to Sub-problems
3. Routing edges between Steiner nodes / pins

= Rectilinearize edges to create OARSMT
= V-shape refinement

Connection Graphs

= [0 capture the proximity information amongst pins
and obstacle corners

= Previous connection graphs:

= Escape Graph (Ganley et al. [ISCAS 94])
= O(n?) edges

= Delaunay Triangulation
= O(n?) edges

= Obstacle-Avoiding Spanning Graph (OASG)
= Extension of spanning graph (Zhou et al. [ASPDAC 01])
= O(n) edges

10

i Problem with Previous OASG

s Previous OASG Approaches:

= Shen et al. [ICCD 05]
= Linetal. [ISPD 07]

= Adding “essential edges” = O(n?) edges

= Long et al. [ISPD 08]

= All considered quadrant partition
= May not contain RMST even Iin the absence of obstacle

g R;0f Cy) i
Rp0fCiay R,0fCiy RaOTCus
R,0f Cy, R, 01 Cyy R,0f Cy,

’ R,0fC,, '

11

i Our OASG Approach

= Generalization of Zhou's Approach

= If no obstacle, same as Zhou'’s original algorithm,
l.e., presence of RMST guaranteed

= Octant partition

= O(n) edges

12

* OASG Example

13

* Minimum Terminal Spanning Tree (MTST)

= Use the technique proposed by Wu et al. [ACTA
INFORMATICA 86]

14

Presenter
Presentation Notes
MTST

Obstacle Penalized Minimum Spanning Tree

MTST OPMST
O

|
UUUUU

Edge weight
= Wirelength considering detour

15

Presenter
Presentation Notes
OPMST

i Partitioning Pins

B OPMST Apply OA-FLUTE to

. each sub-problem

|
DDDDD

= Partition:
1. If an edge is completely blocked by an obstacle
2. If # pins in sub-tree > 20

16

* Tree After OA-FLUTE

Wirelength 25980

9000 [

5000 '

&O00

5000

i ‘ -
2000 I

i —ik

1000

1]

] | |]]]]]] I
] 1000 2000 3000 4000 4000 BO00 7000 g000 Q000 10000

17

* Rectilinearization of Slanted Edges

= Four possible cases for any slanted edge
1.Both L-shape paths are obstacle free
2.Both L-shape paths are blocked by one obstacle
3.0ne L-shape path is blocked and other is free
4.Both L-shape path are blocked but by different obstacles

18

i V-Shape Refinement

= Replace any two adjacent edges with a Steiner tree
= Improve wirelength by 1-2%

=

19

* After Rectilinearization & Refinement

Wirelength 25290

9000 - T
auun‘

7000 - T ‘
BO00 - I
5000 -
&2
2000 - I

1000 |- ol —i
B

a

| |] | |] | |]]
0 1000 2000 3000 4000 a0a0 BOa0 7000 G0an 9000 10000

20

Presenter
Presentation Notes
OARSMT

Experimental Results

Algorithm implemented in C

Comparison with latest binaries from:

= Linetal. [ISPD 07]
= Long et al. [ISPD 08]

Li et al. [ICCAD 08]

All experiments were performed on a 3GHz AMD
Athlon 64 X2 Dual Core Machine (use only 1 core)

Four sets of benchmarks, 27 benchmark circuits

RCO01-RC12: randomly generated by Feng et al. [ISPD 06]
RTO1-RTO5: randomly generated by Lin et al. [ISPD 07]

IND1-IND5: Synopsys industrial testcases from Synopsys in Lin
et al. [ISPD 07]

RLO1-RLO5: larger testcases randomly generated by Long et
al. [ISPD 08]

21

i Wirelength

and Runtime Comparison

Lin et al.

Long et al.

Li et al.

ISPDO7 | ISPD0O8 | ICCAD 08 FOARS
Normalized Wirelength 1.023 1.027 0.995 1
Normalized Runtime 78.45 1.20 29.36 1

22

23

Obstacle-Free Testcase

RCO03 without obstacles, 50 Pins

FOARS Wirelength: 53050 FLUTE-2.5 Wirelength: 53400

10000 -
10000
& 9000
o000
szl a000 T
: T

7000 —

7000 —

ROO0 ﬂ r 000 r

5000 5000 —_—
sk kb o ‘ 4000 F 4 ‘
L ; il
3000 F T_'- 3000
sl a— 2000 - .
toof J——— 1000} 1 1
I:I | 1 1 1 1 1 1 L 1 | D | 1 1 1 1 1 | | 1]
0 1000 2000 3000 4000 5000 BOOD 7000 6000 9000 10000 0 1000 2000 3000 4000 5000 BOOO 7000 8000 9000 10000

24

THANK YOU

25

	FOARS: FLUTE Based Obstacle-Avoiding Rectilinear Steiner Tree Construction
	OARSMT Problem Formulation
	Our Contributions
	If There Is No Obstacle
	Obstacle-Aware FLUTE (OA-FLUTE)
	Type 1: Edge over Obstacle
	Type 2: Steiner Node over Obstacle
	Problems with OA-FLUTE
	FOARS Overview
	Connection Graphs
	Problem with Previous OASG
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Partitioning Pins
	Tree After OA-FLUTE
	Rectilinearization of Slanted Edges
	Slide Number 19
	Slide Number 20
	Experimental Results
	Wirelength and Runtime Comparison
	Slide Number 23
	Obstacle-Free Testcase
	Slide Number 25

