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* OARSMT Problem Formulation

Obstacle-avoiding rectilinear Steiner minimal tree

s |nput
= A set of pins
= A set of rectilinear obstacles

s Output
= A rectilinear Steiner tree
=« Minimizing total wirelength
« Connecting all pins
« Avoiding all obstacles
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= Applications In routing, wirelength estimation, etc.
= NP-complete
= More than ten heuristics proposed since 2005



i Our Contributions

= An OARSMT algorithm called FOARS (FLUTE Based
Obstacle-Avoiding Rectilinear Steiner Tree)
= Outstanding wirelength
= Efficient

= Scalable: O(n log n) time
= Where n = # pins + # obstacle corners

= New ldeas:
= Approach to leverage FLUTE for OARSMT construction
= An efficient obstacle-aware partitioning technique

= Algorithm to construct obstacle-avoiding spanning graph
with good properties



i If There Is No Obstacle

= Rectilinear Steiner Minimal Tree (RSMT) problem

s FLUTE -- Fast LookUp Table Estimation [TCAD 08]
= Extremely fast and accurate
= More accurate than BI1S heuristic

= Almost as fast as minimum spanning tree
construction

= Can we leverage FLUTE for OARSMT construction?



Obstacle-Aware FLUTE (OA-FLUTE)

= // P =set of pins, OB = set of obstacles
Function OA-FLUTE(P, OB)

T = FLUTE(P) // ignore obstacles
If (T overlaps with obstacle)

Partition into several sub-problems P,,...,P;

T = OA-FLUTE(P,, OB) + ... + OA-FLUTE(P,, OB)
Return T

s Two possible types of overlap:
1. An edge is completely blocked by an obstacle

2. A Steiner node is on top of an obstacle



* Type 1: Edge over Obstacle

=> =>

= Partition pins according to the overlapping edge
= Include obstacle corners

= Apply OA-FLUTE recursively on sub-problems to
obtain sub-trees

= Merge sub-trees and exclude corners



* Type 2: Steiner Node over Obstacle

= Partition pins according to the overlapping Steiner
node

= Include obstacle corners

= Apply OA-FLUTE recursively on sub-problems to
obtain sub-trees

= Merge sub-trees and exclude corners



i Problems with OA-FLUTE

= Does not work well if:
1. Routing region is too cluttered by obstacles
Reason: Partitioning based on initial tree
which ignores obstacles
2. There are too many pins
Reason: Performance of FLUTE starts to deteriorate
for more than a hundred pins

= Need a better way to partition the pins

s Then OA-FLUTE can be called to handle each sub-
problem



i FOARS Overview

1. Partitioning Pins
= Obstacle-Avoiding Spanning Graph (OASG)
= Minimum Terminal Spanning Tree (MTST)
= Obstacle Penalized Minimum Spanning Tree (OPMST)
= Partition according to OPMST to obtain sub-problems

2. Fixing tree topology and Steiner node locations
= Applying OA-FLUTE to Sub-problems
3. Routing edges between Steiner nodes / pins

= Rectilinearize edges to create OARSMT
= V-shape refinement



Connection Graphs

= [0 capture the proximity information amongst pins
and obstacle corners

= Previous connection graphs:

= Escape Graph (Ganley et al. [ISCAS 94])
= O(n?) edges

= Delaunay Triangulation
= O(n?) edges

= Obstacle-Avoiding Spanning Graph (OASG)
= Extension of spanning graph (Zhou et al. [ASPDAC 01])
= O(n) edges
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i Problem with Previous OASG

s Previous OASG Approaches:

= Shen et al. [ICCD 05]
= Linetal. [ISPD 07]

= Adding “essential edges” = O(n?) edges

= Long et al. [ISPD 08]

= All considered quadrant partition
= May not contain RMST even Iin the absence of obstacle

g R;0f Cy ) i
Rp0fCiay  R,0fCiy  RaOTCus
R,0f Cy, R, 01 Cyy R,0f Cy,

’ R,0fC,, '

11



i Our OASG Approach

= Generalization of Zhou's Approach

= If no obstacle, same as Zhou'’s original algorithm,
l.e., presence of RMST guaranteed

= Octant partition

= O(n) edges
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* OASG Example
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* Minimum Terminal Spanning Tree (MTST)

= Use the technique proposed by Wu et al. [ACTA
INFORMATICA 86]
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Obstacle Penalized Minimum Spanning Tree

MTST OPMST
O
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Edge weight
= Wirelength considering detour
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i Partitioning Pins

B OPMST Apply OA-FLUTE to

. each sub-problem

|
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= Partition:
1. If an edge is completely blocked by an obstacle
2. If # pins in sub-tree > 20

16



* Tree After OA-FLUTE

Wirelength 25980
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* Rectilinearization of Slanted Edges

= Four possible cases for any slanted edge
1.Both L-shape paths are obstacle free
2.Both L-shape paths are blocked by one obstacle
3.0ne L-shape path is blocked and other is free
4.Both L-shape path are blocked but by different obstacles
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i V-Shape Refinement

= Replace any two adjacent edges with a Steiner tree
= Improve wirelength by 1-2%

=
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* After Rectilinearization & Refinement

Wirelength 25290
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Experimental Results

Algorithm implemented in C

Comparison with latest binaries from:

= Linetal. [ISPD 07]
= Long et al. [ISPD 08]

Li et al. [ICCAD 08]

All experiments were performed on a 3GHz AMD
Athlon 64 X2 Dual Core Machine (use only 1 core)

Four sets of benchmarks, 27 benchmark circuits

RCO01-RC12: randomly generated by Feng et al. [ISPD 06]
RTO1-RTO5: randomly generated by Lin et al. [ISPD 07]

IND1-IND5: Synopsys industrial testcases from Synopsys in Lin
et al. [ISPD 07]

RLO1-RLO5: larger testcases randomly generated by Long et
al. [ISPD 08]
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i Wirelength

and Runtime Comparison

Lin et al.

Long et al.

Li et al.

ISPDO7 | ISPD0O8 | ICCAD 08 FOARS
Normalized Wirelength 1.023 1.027 0.995 1
Normalized Runtime 78.45 1.20 29.36 1
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Obstacle-Free Testcase

RCO03 without obstacles, 50 Pins

FOARS Wirelength: 53050 FLUTE-2.5 Wirelength: 53400
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