
1

FOARS: FLUTE Based Obstacle-
Avoiding Rectilinear Steiner Tree

Construction

Gaurav Ajwani and Chris Chu
Iowa State University

Wai-Kei Mak
National Tsing Hua University

2

OARSMT Problem Formulation

Obstacle-avoiding rectilinear Steiner minimal tree
 Input

 A set of pins
 A set of rectilinear obstacles

 Output
 A rectilinear Steiner tree

 Minimizing total wirelength
 Connecting all pins
 Avoiding all obstacles

 Applications in routing, wirelength estimation, etc.
 NP-complete
 More than ten heuristics proposed since 2005

3

Our Contributions

 An OARSMT algorithm called FOARS (FLUTE Based
Obstacle-Avoiding Rectilinear Steiner Tree)
 Outstanding wirelength
 Efficient
 Scalable: O(n log n) time

 where n = # pins + # obstacle corners

 New Ideas:
 Approach to leverage FLUTE for OARSMT construction
 An efficient obstacle-aware partitioning technique
 Algorithm to construct obstacle-avoiding spanning graph

with good properties

4

If There Is No Obstacle

 Rectilinear Steiner Minimal Tree (RSMT) problem

 FLUTE -- Fast LookUp Table Estimation [TCAD 08]
 Extremely fast and accurate

 More accurate than BI1S heuristic
 Almost as fast as minimum spanning tree

construction

 Can we leverage FLUTE for OARSMT construction?

5

Obstacle-Aware FLUTE (OA-FLUTE)

 // P = set of pins, OB = set of obstacles
Function OA-FLUTE(P, OB)

T = FLUTE(P) // ignore obstacles
If (T overlaps with obstacle)

Partition into several sub-problems P1,…,Pt
T = OA-FLUTE(P1, OB) + ... + OA-FLUTE(Pt, OB)

Return T

 Two possible types of overlap:
1. An edge is completely blocked by an obstacle

2. A Steiner node is on top of an obstacle

6

Type 1: Edge over Obstacle

 Partition pins according to the overlapping edge
 Include obstacle corners

 Apply OA-FLUTE recursively on sub-problems to
obtain sub-trees

 Merge sub-trees and exclude corners

a b a b

7

Type 2: Steiner Node over Obstacle

a b a b

 Partition pins according to the overlapping Steiner
node
 Include obstacle corners

 Apply OA-FLUTE recursively on sub-problems to
obtain sub-trees

 Merge sub-trees and exclude corners

8

Problems with OA-FLUTE

 Does not work well if:
1. Routing region is too cluttered by obstacles

Reason: Partitioning based on initial tree
which ignores obstacles

2. There are too many pins
Reason: Performance of FLUTE starts to deteriorate

for more than a hundred pins

 Need a better way to partition the pins
 Then OA-FLUTE can be called to handle each sub-

problem

9

FOARS Overview

1. Partitioning Pins
 Obstacle-Avoiding Spanning Graph (OASG)
 Minimum Terminal Spanning Tree (MTST)
 Obstacle Penalized Minimum Spanning Tree (OPMST)
 Partition according to OPMST to obtain sub-problems

2. Fixing tree topology and Steiner node locations
 Applying OA-FLUTE to Sub-problems

3.Routing edges between Steiner nodes / pins
 Rectilinearize edges to create OARSMT
 V-shape refinement

10

Connection Graphs

 To capture the proximity information amongst pins
and obstacle corners

 Previous connection graphs:
 Escape Graph (Ganley et al. [ISCAS 94])

 O(n2) edges

 Delaunay Triangulation
 O(n2) edges

 Obstacle-Avoiding Spanning Graph (OASG)
 Extension of spanning graph (Zhou et al. [ASPDAC 01])
 O(n) edges

11

Problem with Previous OASG

 Previous OASG Approaches:
 Shen et al. [ICCD 05]
 Lin et al. [ISPD 07]

 Adding “essential edges”  O(n2) edges

 Long et al. [ISPD 08]
 All considered quadrant partition

 May not contain RMST even in the absence of obstacle

R4 of C1,4

R4 of C1,3

R3 of C1,4

R4 of C1,1

R1 of C1,4

R3 of C1,3

R1 of C1,1

R2 of C1,1

R1 of C1,2

R2 of C1,2
R3 of C1,2
R2 of C1,3

C1,2

C1,1 C1,4

C1,3

R3R2

R4R1

12

Our OASG Approach

 Generalization of Zhou’s Approach
 If no obstacle, same as Zhou’s original algorithm,

i.e., presence of RMST guaranteed
 Octant partition

 O(n) edges

R1
R2

R3
R4R5

R6

R7

R8

R3
R4R5

R6

R1
R2

R3
R4R5

R6

R7

R8

13

OASG Example

14

Minimum Terminal Spanning Tree (MTST)

 Use the technique proposed by Wu et al. [ACTA
INFORMATICA 86]

Presenter
Presentation Notes
MTST

15

Obstacle Penalized Minimum Spanning Tree

MTST OPMST

Edge weight
= Wirelength considering detour

Presenter
Presentation Notes
OPMST

16

Partitioning Pins

OPMST

 Partition:
1. If an edge is completely blocked by an obstacle
2. If # pins in sub-tree > 20

Apply OA-FLUTE to
each sub-problem

17

Wirelength 25980

Tree After OA-FLUTE

18

 Four possible cases for any slanted edge
1.Both L-shape paths are obstacle free
2.Both L-shape paths are blocked by one obstacle
3.One L-shape path is blocked and other is free
4.Both L-shape path are blocked but by different obstacles

Rectilinearization of Slanted Edges

19

 Replace any two adjacent edges with a Steiner tree
 Improve wirelength by 1-2%

V-Shape Refinement

20

Wirelength 25290

After Rectilinearization & Refinement

Presenter
Presentation Notes
OARSMT

21

 Algorithm implemented in C
 Comparison with latest binaries from:

 Lin et al. [ISPD 07]
 Long et al. [ISPD 08]
 Li et al. [ICCAD 08]

 All experiments were performed on a 3GHz AMD
Athlon 64 X2 Dual Core Machine (use only 1 core)

 Four sets of benchmarks, 27 benchmark circuits
 RC01-RC12: randomly generated by Feng et al. [ISPD 06]
 RT01-RT05: randomly generated by Lin et al. [ISPD 07]
 IND1-IND5: Synopsys industrial testcases from Synopsys in Lin

et al. [ISPD 07]
 RL01-RL05: larger testcases randomly generated by Long et

al. [ISPD 08]

Experimental Results

22

Lin et al.
ISPD 07

Long et al.
ISPD 08

Li et al.
ICCAD 08 FOARS

Normalized Wirelength 1.023 1.027 0.995 1

Normalized Runtime 78.45 1.20 29.36 1

Wirelength and Runtime Comparison

23

OARSMT for RT10
10 Pins, 500 Obstacles

24

Obstacle-Free Testcase

FLUTE-2.5 Wirelength: 53400FOARS Wirelength: 53050

RC03 without obstacles, 50 Pins

25

THANK YOU

	FOARS: FLUTE Based Obstacle-Avoiding Rectilinear Steiner Tree Construction
	OARSMT Problem Formulation
	Our Contributions
	If There Is No Obstacle
	Obstacle-Aware FLUTE (OA-FLUTE)
	Type 1: Edge over Obstacle
	Type 2: Steiner Node over Obstacle
	Problems with OA-FLUTE
	FOARS Overview
	Connection Graphs
	Problem with Previous OASG
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Partitioning Pins
	Tree After OA-FLUTE
	Rectilinearization of Slanted Edges
	Slide Number 19
	Slide Number 20
	Experimental Results
	Wirelength and Runtime Comparison
	Slide Number 23
	Obstacle-Free Testcase
	Slide Number 25

