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OARSMT Problem Formulation

Obstacle-avoiding rectilinear Steiner minimal tree 
 Input 

 A set of pins
 A set of rectilinear obstacles

 Output
 A rectilinear Steiner tree

 Minimizing total wirelength
 Connecting all pins
 Avoiding all obstacles

 Applications in routing, wirelength estimation, etc.
 NP-complete
 More than ten heuristics proposed since 2005
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Our Contributions 

 An OARSMT algorithm called FOARS (FLUTE Based 
Obstacle-Avoiding Rectilinear Steiner Tree)
 Outstanding wirelength
 Efficient
 Scalable: O(n log n) time

 where n = # pins + # obstacle corners

 New Ideas:
 Approach to leverage FLUTE for OARSMT construction
 An efficient obstacle-aware partitioning technique
 Algorithm to construct obstacle-avoiding spanning graph 

with good properties
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If There Is No Obstacle

 Rectilinear Steiner Minimal Tree (RSMT) problem

 FLUTE -- Fast LookUp Table Estimation [TCAD 08]
 Extremely fast and accurate

 More accurate than BI1S heuristic
 Almost as fast as minimum spanning tree 

construction

 Can we leverage FLUTE for OARSMT construction?
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Obstacle-Aware FLUTE (OA-FLUTE)

 // P = set of pins, OB = set of obstacles
Function OA-FLUTE(P, OB)

T = FLUTE(P)   // ignore obstacles
If (T overlaps with obstacle)

Partition into several sub-problems P1,…,Pt
T = OA-FLUTE(P1, OB) + ... + OA-FLUTE(Pt, OB)

Return T

 Two possible types of overlap:
1. An edge is completely blocked by an obstacle

2. A Steiner node is on top of an obstacle
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Type 1: Edge over Obstacle

 Partition pins according to the overlapping edge 
 Include obstacle corners

 Apply OA-FLUTE recursively on sub-problems to 
obtain sub-trees

 Merge sub-trees and exclude corners

a b a b
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Type 2: Steiner Node over Obstacle

a b a b

 Partition pins according to the overlapping Steiner 
node 
 Include obstacle corners

 Apply OA-FLUTE recursively on sub-problems to 
obtain sub-trees

 Merge sub-trees and exclude corners
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Problems with OA-FLUTE

 Does not work well if:
1. Routing region is too cluttered by obstacles

Reason: Partitioning based on initial tree 
which ignores obstacles

2. There are too many pins
Reason: Performance of FLUTE starts to deteriorate 

for more than a hundred pins

 Need a better way to partition the pins
 Then OA-FLUTE can be called to handle each sub-

problem
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FOARS Overview

1.  Partitioning Pins
 Obstacle-Avoiding Spanning Graph (OASG)
 Minimum Terminal Spanning Tree (MTST) 
 Obstacle Penalized Minimum Spanning Tree (OPMST)
 Partition according to OPMST to obtain sub-problems

2. Fixing tree topology and Steiner node locations
 Applying OA-FLUTE to Sub-problems

3.Routing edges between Steiner nodes / pins
 Rectilinearize edges to create OARSMT
 V-shape refinement
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Connection Graphs

 To capture the proximity information amongst pins 
and obstacle corners

 Previous connection graphs:
 Escape Graph (Ganley et al. [ISCAS 94])

 O(n2) edges

 Delaunay Triangulation
 O(n2) edges

 Obstacle-Avoiding Spanning Graph (OASG)
 Extension of spanning graph (Zhou et al. [ASPDAC 01])
 O(n) edges
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Problem with Previous OASG

 Previous OASG Approaches:
 Shen et al. [ICCD 05]
 Lin et al. [ISPD 07]

 Adding “essential edges”  O(n2) edges

 Long et al. [ISPD 08]
 All considered quadrant partition

 May not contain RMST even in the absence of obstacle 
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Our OASG Approach

 Generalization of Zhou’s Approach
 If no obstacle, same as Zhou’s original algorithm,

i.e., presence of RMST guaranteed
 Octant partition

 O(n) edges
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OASG Example
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Minimum Terminal Spanning Tree (MTST)

 Use the technique proposed by Wu et al. [ACTA 
INFORMATICA 86]

Presenter
Presentation Notes
MTST
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Obstacle Penalized Minimum Spanning Tree

MTST OPMST

Edge weight 
= Wirelength considering detour

Presenter
Presentation Notes
OPMST
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Partitioning Pins

OPMST

 Partition:
1. If an edge is completely blocked by an obstacle
2. If # pins in sub-tree > 20

Apply OA-FLUTE to 
each sub-problem
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Wirelength 25980

Tree After OA-FLUTE
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 Four possible cases for any slanted edge 
1.Both L-shape paths are obstacle free
2.Both L-shape paths are blocked by one obstacle
3.One L-shape path is blocked and other is free
4.Both L-shape path are blocked but by different obstacles

Rectilinearization of Slanted Edges
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 Replace any two adjacent edges with a Steiner tree
 Improve wirelength by 1-2%

V-Shape Refinement
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Wirelength 25290

After Rectilinearization & Refinement

Presenter
Presentation Notes
OARSMT
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 Algorithm implemented in C
 Comparison with latest binaries from:

 Lin et al. [ISPD 07]
 Long et al. [ISPD 08]
 Li et al. [ICCAD 08]

 All experiments were performed on a 3GHz AMD 
Athlon 64 X2 Dual Core Machine (use only 1 core)

 Four sets of benchmarks, 27 benchmark circuits 
 RC01-RC12: randomly generated by Feng et al. [ISPD 06]
 RT01-RT05: randomly generated by Lin et al. [ISPD 07]
 IND1-IND5: Synopsys industrial testcases from Synopsys in Lin 

et al. [ISPD 07]
 RL01-RL05: larger testcases randomly generated by Long et 

al. [ISPD 08]

Experimental Results
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Lin et al. 
ISPD 07

Long et al. 
ISPD 08

Li et al. 
ICCAD 08 FOARS

Normalized Wirelength 1.023 1.027 0.995 1

Normalized Runtime 78.45 1.20 29.36 1

Wirelength and Runtime Comparison
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OARSMT for RT10
10 Pins, 500 Obstacles
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Obstacle-Free Testcase

FLUTE-2.5 Wirelength: 53400FOARS Wirelength: 53050

RC03 without obstacles, 50 Pins
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THANK YOU
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