A Metal-Only-ECO Solver for

Input-Slew and Output-Loading
Violations

Chien-Pang Lu, Mango C.-T. Chao, Chen-Hsing Lo,
and Chih-Wei Chang

Mstar Semiconductor, ChuPei, Taiwan
Dept. of EE, Nat’l Chiao Tung Univ., Hsinchu, Taiwan

Y

Outline

¢ Metal-only ECO & its challenges
¢ Problem Formulation

+ Proposed Slew/Loading-Violation Solver
(MOESS)
= Overall Flow
= Increase spare-butfer pool
= Wire-loading estimation
= ESB mode (minimize # of inserted buffers)
s ECT mode (reduce critical path’s delay)
+ Experimental result

¢ Conclusions

T
Metal-Only ECO

- The increasing pressure of time-to-market has
forced IC design houses to improve capability of
handling incremental design changes

- Those design changes are often requested after
silicon chips are manufactured
= its photomasks need to be changed

» Solution: metal-only ECO

= change only the metal layers (for interconnect)
while the base layers (for cells) remain the same

= reduce cost by reusing base-layer photomasks
» shorten tape-out turn-around time

T
EDA Tools Needed in Metal-Only ECO

- Allocate spare cells all over a chip

= EDA vendors already provide effective solutions
 Obtain netlist difference and implement the

difference

» EDA vendors already provide effective solutions
- A router dealing with a lot obstacles

= EDA vendors already provide effective solutions
- Solve violations of timing-related factors, such

as setup time, input slew, and output loading

= However, vendor’s solutions are not effective so
far

Y

Outline

*
¢ Problem Formulation
*

¢ o

Problem Formulation of Proposed
%ork
1VEI:

= Input-slew and output-loading constraints
= Nets violating the constraints after the design changes
are implemented
= Available spare cells
 Objective
= Insert fewest spare cells as buffers to eliminate the
violations
« Use a commercial APR tool to realize the buffer

Insertions

 Focus on how to select proper spare cells and
estimate the added wire loading when inserting the

buffers by the adopted APR tool

T

Transfer Input-slew Constraint into

Equivalent Output-loading Constraint

* OAL, : Output Available Loading

s The maximum output loading of gate g which can generate an
output slew smaller than the slew constraint assuming that g’s
input slew is equal to slew constraint

- Obtaining OAL, for each type of gate

= Binary search, table look-up
- Ex: target input slew constraint, 500ps

‘ ‘ Iteration input slew outputload output slew
1 500p 4000ff 2000p
—/~ -/ 500p 1500ff 400p
‘@
D
constant
(large cap pin)

2
3 500p 1600ff 520p
4 500p 1540ff 500p

OAL(1540ff): under 500p input slew

Outline

&

o

¢ Proposed Slew/Loading-Violation Solver
(MOESS)
= Overall Flow
» Increase spare-buffer pool
= Wire-loading estimation
= ESB mode (minimize # of inserted buffers)
s ECT mode (reduce critical path’s delay)

&

¢

Overall Flow of MOESS

1, Cdllécﬂ usable spare gates

Check STA timing report
No i

Check STA t1m1ng report
No i

Done

T

Increase Spare-Buffer Pool

» Recycle of redundant cells
= APR tools use special tags to identify spare buffers
= Tags may be lost by engineer’s incorrect operation

» MOESS applies a breadth-first search starting from
each floating output to recycle the lost-tag gates

- Function cells as buffers by connecting the other
inputs to a constant

A aft
8ff —/_

3ff =

>

w >

Y

Wire-Loading Estimation for a

Two-Terminal Net

« Use a net’s Manhattan distance (MD) to estimate its

wire loading (WL)
» WL(p1,p2)

=MDy (p1,p2)*RRMD,(VD(p1,p2)*K, + MD_(p1,p2)*RRMD,(VD(p1,p2)*K,

! |

Manhattan distance

routing ratio to Manhattan distance

\

Wire loading constant per routing unit

of vias over rectangle area formed by p1 and p2

This function is actually the average statistics
collected from the past usage of the adopted ARP tool

Solving Violation for a High-Fanout Net

« How to use fewest buffers to solve a violation?
> How many termmals driven by a buffer?

> &

in

T — Y

Flow of ESB Buffer-Insertion Scheme
(Use fewest buffers to solve the violation)

A. Obtain MC (minimum-chain)
order of net’s terminal pins

Y

B. Group terminal pins E. Update net and recalculate
based on the MC order Its MC order

Y Y

C. Calculate the ideal buffer
location for driving grouped terminals NO

{ @OK

D. Search real spare buffer Done
and insert it to the net

Meet loading constraint?

T

Minimum-Chain Order of a Net’s

Terminals
- Algorithm:
= Start from violation gate

= Select the closest terminal as the next ordered
terminal until all terminal are ordered

- net terminal

s

Group Terminals

« Group the terminals based on the reversed MC order
- Each time add one terminal into the group

- Stop when adding the new terminal would exceed gate’s
OAL (slew/loading constraint)

" > .(InC, +WL(p,.p._;)) < OALg
=1

- Use a buffer to drive as many terminals as possible

/- @*.
in
o

pl

Calculate Ideal Location of Inserted
Buffer

- Two rules when deciding ideal buffer’s location
« R1:Use all buffer’s driving capability under the given

constraint
| Xp-X,[*Up(b,pa)+[Yy,-Y, [*U(b,p,)<ORL, J-ouput
. N . ldeal purrer
« ORL - Output Remain Loading on: overloading group
. ORLb — OALb _ Z(| ”Cp, _|_\/\/|_(pi N)) terminal closest to g
i=1

« Uy and U, are vertical and horizontal distance per loading unit
e R2 : Locate the inserted buffer as close to the violation
gate as possible
o (Y,-Y))/(Xy-X)=(Y,-Y,) /(X-X,)
 Limit the ideal location between g and p,,

e —

Find Spare Buffer near Ildeal Location

- Use ORL: as the radius to draw the boundary of
searching feasible spare buffers

— slope line, from gto p_
(Xg:Yg)—
- - /\
- N - ~
~ s
~ P S
g h S oz < ; b > O
BN

maximum ORL, loading . — P,
boundary (Manhattan distance)

b: candidate spare g: overloading spare

18

Backward Tolerance: Enlarge Searching

Space

- Ungroup the last grouped terminal to increase the
ORL and in turn the radius of the search space
= Keep on ungrouping until a spare gate is found

~ S 4

4
%: FG, farthest group []II>: spare not candidate @ : candidate spare gate

@) (b)

Example

Output loading exceed Output loading meet
constraints constraints.
Update net and recalculate Done!
its MC order

<

-

éiﬁ

1

o

20

ECT Mode (reduce critical path’s delay)

- Separate the grouping of original terminals from
the grouping of new-added terminals far away

from the violation output

= Group the distant, new-added terminals first

ESB Mode
q1— 30um timing critical termin@ m B
— 70um
| ,# 100um
extra delay from buffer!
1500um
After ECO
2500um o iti-cycle
3500um J Ppath

ECT Mode

30um
70um

100um

MD constraint
= 1000u

1500um

2500Um After ECO

multi-cycle
3500um

path

e —

Outline

4
\ 4
\ 4

+ Experimental result
o

T —

Design Information

Proj. | inst. | process | spare
(ver.) count count size
40 0

Da(3) 190K 7.6K

Db(3) 210K 18 9.1K 1030 6 0
Dc(4) 242K 18 5.5K 507 71 0
Dd(3) 309K 18 10.4K 1904 47 0
De(2) 871K 13 62.4K 127 0 35
Df(2) 1.3M 13 48.8K 1276 15 243

Dg(4) 1.6M 13 80.5K 1702 166 258

S

Experiment Result

Proj. worst loading
El®)

I T P T P VT

Da(3) 5.0n 1.9n -2.2n

Db(3) 1.8n 1.8n <1 <1 >0 >0
Dc(4) 3.8n 2.0n <1 <1 -0.3n >0
DA(3) 2.1n 2.0n <1 <1 >0 >0
De(2) 0.9n 0.9n 1.2 1.1 >0 >0
Df(2) 1.3n 0.9n 3.5 1.2 -0.1n >0
Dg(4) 1.2n 1.0n 4.6 1.2 -0.4n >0

means the result violates the constraint

e —

Experiment Result

400

of inserted spare buffer

(average imp. 38%)

®[3] ™ MOESS

350
300

250
200

150

100

da(3)db(3) dc(4) dd(3) de(2) df(2) dg(4)

300
250
200
150
100

50

RunTime
(average 14.9X faster)

m [3] = MOESS

252

N

T — Y

Experiment Result

spare | ECO | #violation | worstslew worst worst slack
count | size loading
2

7 O <1 <1 >0 >0

Dh(2) 4.2K 5

1.8n 1.8n
Dh(3) 4.1K 267 29 2 2.1n 1.8n <1 <1 >0 >0
Dh(s) 3.7K 1672 118 5 4.6n 2.0n 1.3 <1 -1.4n = >0
Dh(7) 1.9K 43 9 2 2.8n 2.0n <1 <1 -1.7n -0.1n
Dh(8) 1.8K 135 17 3 3.5n 2.1n <1 <1 -0.5n -0.1n

of instance count; 352.1K

means the result violates the constraint

e —

Experiment Result

of inserted spare buffer Run Time
(average speed up 29.9X)

m [3] ® MOESS m [3] ® MOESS

42
45 39
35

()
op

35

[H.Y
(I

dh(2) dh(3) dh(5) dh(7) dh(8)

dh(2) dh(3) dh(5) dh(7) dh(8)

e —

Conclusions

- An effective solver to solve the slew/loading violations
generated in metal-only ECO

- Less # of spare gates in use
o Shorter runtime

- The proposed solver can be ported to other APR tools as long
as the tools can provide open access to its design database

e —

Thank you!

e —

Solving Slew/Loading Violation in Metal-
Only ECO

 Current commercial tools are not aware of the
physical locations of spare gates

= Available spare gates may deviate from its ideal
location

real spare location \ slew 1500p

slew 500p

desired location of _
Inserted buffer -

Lack of physical knowledge!

