A Faster Approximation Scheme for Timing Driven Minimum Cost Layer Assignment

Shiyan Hu*, Zhuo Li**, and Charles J. Alpert**
*Dept of ECE, Michigan Technological University

**IBM Austin Research Lab

Outline

Introduction

Problem Formulation

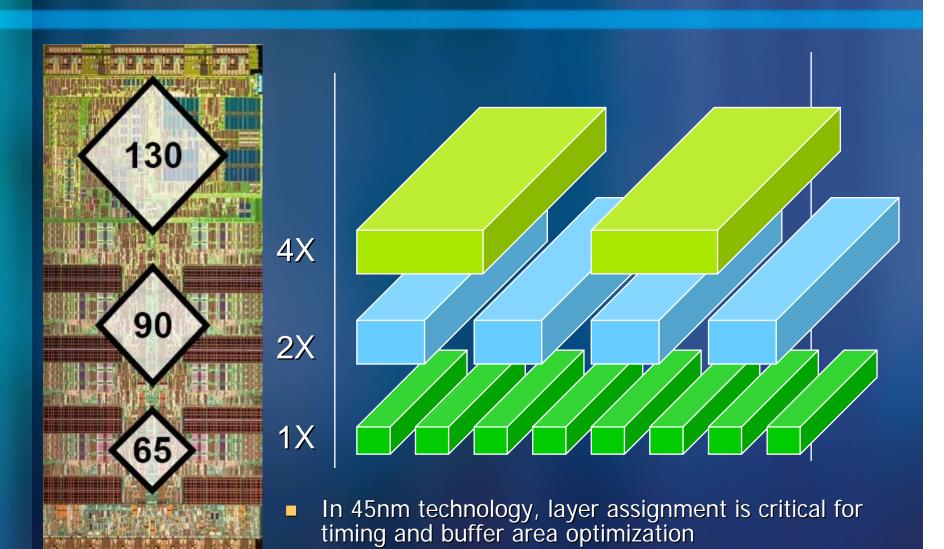
The Algorithm

- Linear time dynamic programming
- Bound independent oracle search

Experimental Results

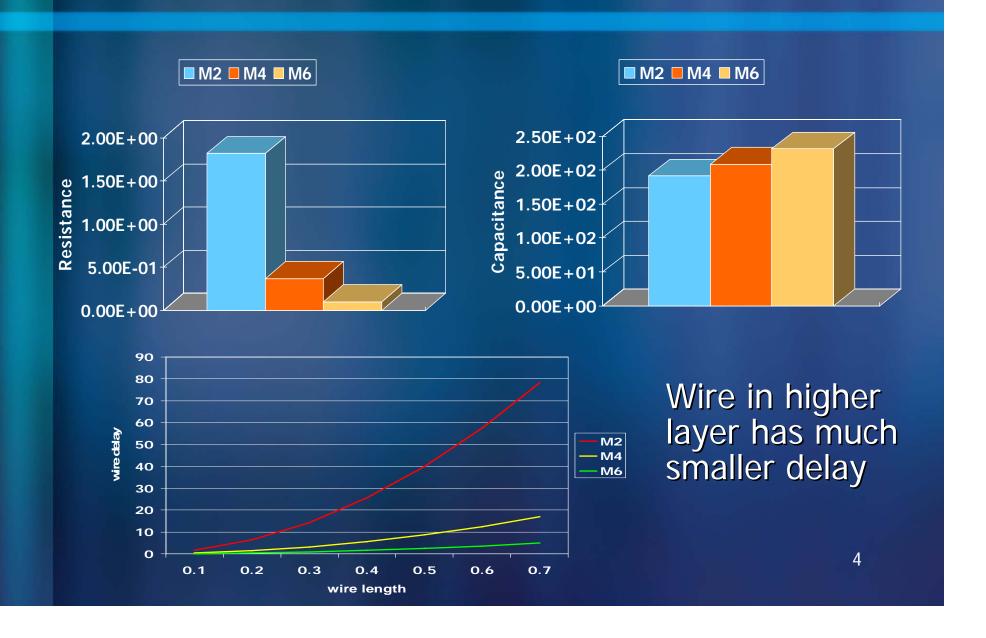
Conclusion

Layer Assignment



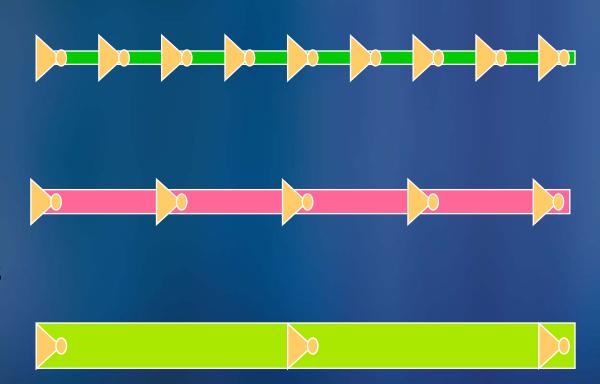
3

Wire RC and Delay

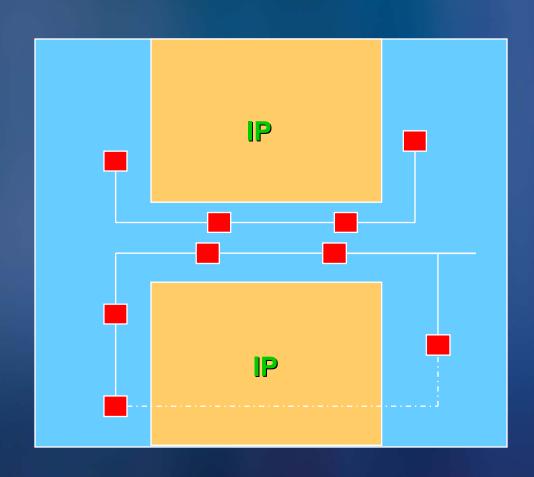


Impact to Buffering

- A buffer can drive longer distance in higher layer
 - Timing is improved
 - Fewer buffers are needed



Impact to Routing/Buffering

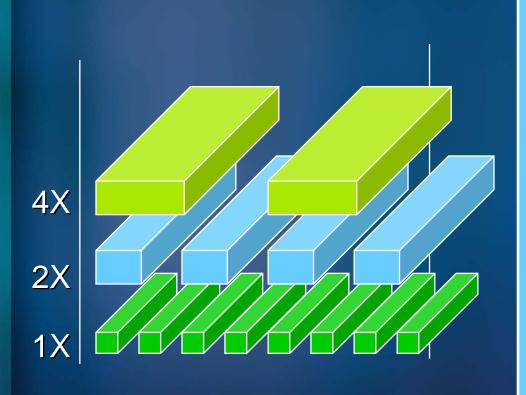


Problem Formulation

Can be different layers

- A layer refers to a pair of horizontal and vertical layers with similar RC characteristics
- Between any buffers, one layer is used
- In early design stage, when buffering effect is considered, wire shaping is not important [Alpert TCAD'01]
- In post-routing stage, wire shaping could improve timing, reduce vias and reduce coupling and so forth

Fully Polynomial Time Approximation Scheme (FPTAS)



- A Fully Polynomial Time Approximation Scheme
 - Provably good
 - Within $(1+\epsilon)$ optimal cost for any $\epsilon > 0$
 - Runs in time polynomial in n (segments), m (layers) and 1/ε
 - Ultimate solution for an NP-hard problem in theory
 - Highly practical

Previous Work in ICCAD'08

■ It depends on M and uses a DP of O(mn³/ε²) time

Ratio between upper and lower bounds of the cost of optimal layer assignment

An iterative DP with incremental W

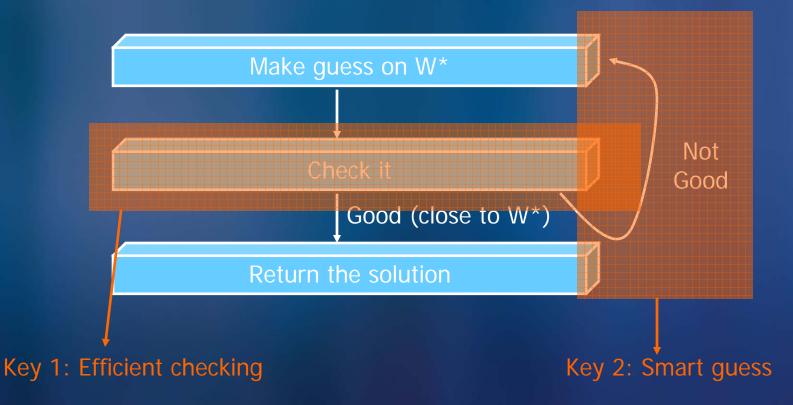
Bound independent oracle query

Our DP needs one run for all W

■ New FPTAS runs in O(mn²/ε) time

The Rough Picture

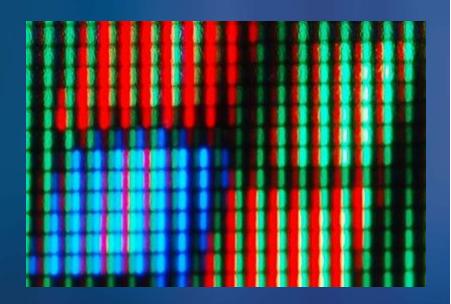
W*: the cost of optimal solution



Key 1: Efficient Checking

Benefit of guess

- Only maintain the solutions with cost no greater than the guessed cost
- Accelerate DP



The Oracle

- □ Oracle (x Setup upper and lower bounds of cost W* r x>W* or not
 - Without knowing W*
 - Answer officiently

Guess x within the bounds

Oracle (x)

Update the bounds

Construction of Oracle(x)

Dynamic Programming

Only interested in whether there is a solution with cost up to x satisfying timing constraint

Scale and round each wire cost

$$w = \left\lfloor \frac{w}{x\varepsilon/n} \right\rfloor$$

Perform DP to scaled problem with cost bound n/s. Time polynomial in n/s

Scaling and Rounding

Rounding error at each wire ≤xε/n, total rounding error ≤xε.

- Larger x: larger error, fewer distinct costs and faster
- Smaller x: smaller error, more distinct costs and slower
- Rounding is the reason of acceleration

Wire cost

4xE/n

Dynamic Programming Results

DP result w/ all w are integers ≤ n/ε

Yes, there is a solution satisfying timing constraint

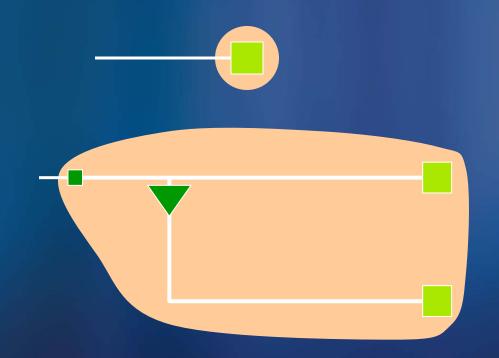
No, no such solution

With cost rounding back, the solution has cost at most $n/\epsilon \cdot x\epsilon/n + x\epsilon = (1+\epsilon)x > W^*$

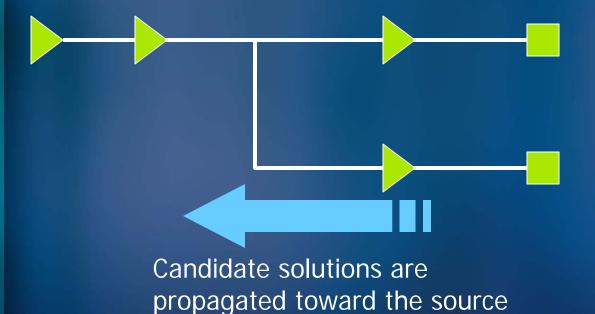
With cost rounding back, the solution has cost at least $n/\epsilon \bullet x\epsilon/n$ = $x \le W^*$

Solution Characterization

- To model effect to upstream, a candidate solution is associated with
- v: a node
- Q: required arrival time
- W: cumulative wire cost

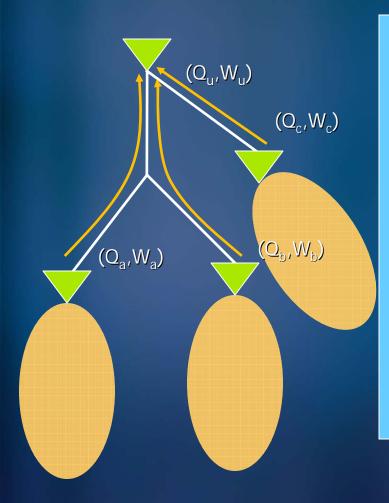


Cost (W)-Bounded Dynamic Programming (DP)



- Start from sinks
- Candidate solutions are generated
- Two operations
 - Subtree processing
 - Solution update at buffer
- Solution Pruning

Subtree Processing



Three paths

$$- P_b: b -> u$$

$$-P_c: c \rightarrow u$$

$$Q_{u}(l) = \min\{Q_{a} - d(p_{a}, l), Q_{b} - d(p_{b}, l), Q_{c} - d(p_{c}, l)\}$$

$$W_{u}(I) = W_{a} + W_{b} + W_{c} + w(T,I)$$

Wires are in the same layer I

Exponential # of Solutions

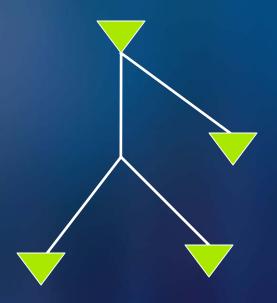
- For two solutions at a node with the same
 W, the one with smaller Q is dominated
- Try to only generate non-dominated solutions since most of O(W^k) solutions are dominated solutions

```
 \begin{array}{lll} (O_{a,1}, W_{a,1}) & (O_{b,1}, W_{b,1}) \\ (O_{a,2}, W_{a,2}) & (O_{b,2}, W_{b,2}) \\ (O_{a,3}, W_{a,3}) & (O_{b,3}, W_{b,3}) \\ (O_{a,4}, W_{a,4}) & (O_{b,4}, W_{b,4}) \end{array}
```

Multi-Way Merging

If best Q for cost w is obtained by merging $Q(a_{11}^1)$, $Q(a_{12}^2)$,..., $Q(a_{1k}^k)$, where $i_1 + i_2 + ... i_k = w$, best Q for cost w+1 is obtained by

 $\max_{1 \le r \le k} \min \{Q(a_{i1}^1), Q(a_{i2}^2), ..., Q(a_{ir+1}^r), ..., Q(a_{ik}^k)\}$



Four-Branch Example

Solution(w=8, Q=9) is shown. To compute Solution (w=9, Q)

(W,Q)	a ¹	a^2	a^3	a^4
1	(1,10)←	(1,12)	(1,15)	(1,12)
2	(2,8)	(2,10)←	— (2,12)	(2,10)←
3	(3,7)	(3,4)	(3,9)←	(3,7)
4	(4,5)	(4,2)	(4,5)	(4,6)
5	(5,2)	(5,1)	(5,7)	(5,2)

Candidate Solution (w=9, Q=8)

(W,Q)	a ¹	a^2	a^3	a^4
1	(1,10)	(1,12)	(1,15)	(1,12)
2	(2,8) ←	(2,10)←	_ (2,12)	(2,10)←
3	(3,7)	(3,4)	(3,9)←	(3,7)
4	(4,5)	(4,2)	(4,5)	(4,6)
5	(5,2)	(5,1)	(5,7)	(5,2)

Candidate Solution (w=9, Q=4)

(W,Q)	a ¹	a^2	a^3	a^4
1	(1,10)←	(1,12)	(1,15)	(1,12)
2	(2,8)	(2,10)	(2,12)	(2,10)←
3	(3,7)	(3,4) ←	(3,9)←	(3,7)
4	(4,5)	(4,2)	(4,5)	(4,6)
5	(5,2)	(5,1)	(5,7)	(5,2)

Candidate Solution (w=9, Q=5)

(W,Q)	a¹	a^2	a^3	a ⁴
1	(1,10)←	(1,12)	(1,15)	(1,12)
2	(2,8)	(2,10)←	_ (2,12)	(2,10)←
3	(3,7)	(3,4)	(3,9)	(3,7)
4	(4,5)	(4,2)	(4,5)←	(4,6)
5	(5,2)	(5,1)	(5,7)	(5,2)

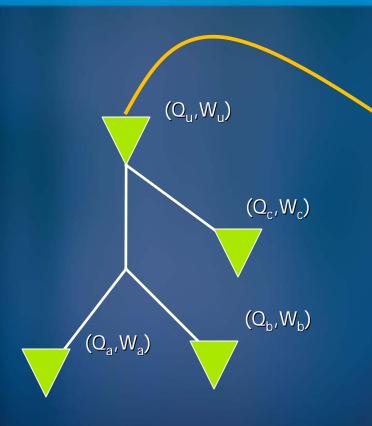
Candidate Solution (w=9, Q=7)

(W,Q)	a¹	a^2	a^3	a ⁴
1	(1,10)←	(1,12)	(1,15)	(1,12)
2	(2,8)	(2,10)←	_ (2,12)	(2,10)
3	(3,7)	(3,4)	(3,9)←	(3,7) ←
4	(4,5)	(4,2)	(4,5)	(4,6)
5	(5,2)	(5,1)	(5,7)	(5,2)

Linear Time Multi-Way Merging

Lemma: given a subtree with m layers, k branches and W non-dominated solutions at each downstream buffer, one can merge them in O(mkW) time.

Solution Update at Buffer



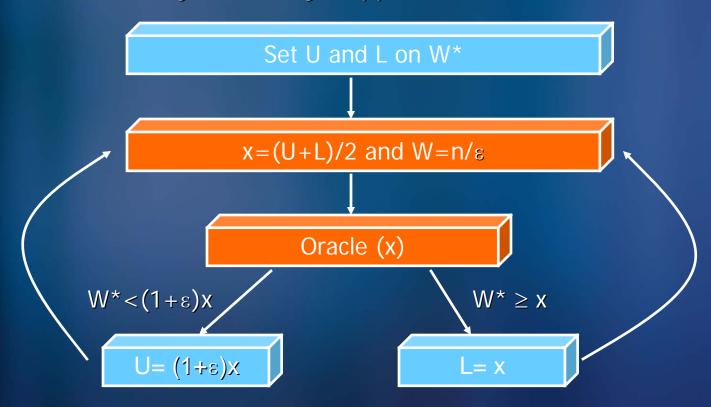
- After merging, one nondominated solution per layer per cost, totally O(mW) solutions
- For each cost, find largest Q for all layers after buffer and propagate it

Cost-Bounded DP

Lemma: given a tree with n wire segments and m layers, the optimal layer assignment subject to cost budget W=n/ε can be computed in O(mnW)=O(mn²/ε) time.

Key 2: Bound Independent Guess

- U (L): upper (lower) bound on W*
- Naive binary search style approach

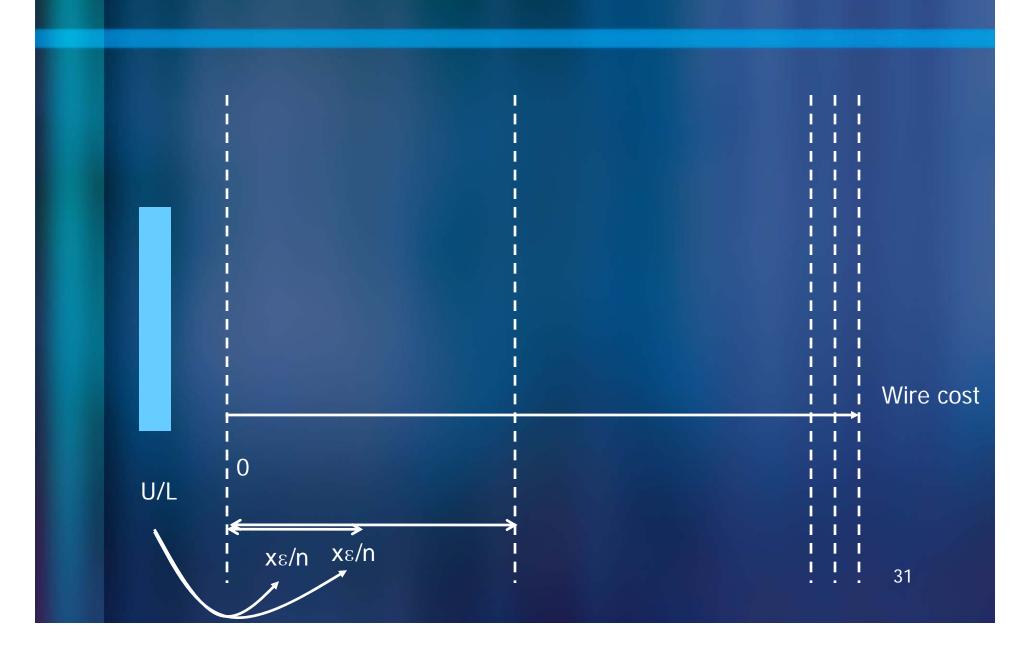


Runtime depends on the initial bounds U and L

Adapt &

- Rounding factor xε/n for cost
- Larger ε: faster with rough estimation
- Smaller ε: slower with accurate estimation
- Adapt ε and relate it with U and L

U/L Related Scale & Round

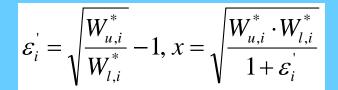


Conceptually

 Begin with large ε' and progressively reduce it according to U/L as x approaches W*

- Set ε' as a geometric sequence of ..., 8, 4, 2, 1, 1/2, ..., ε
- One run of DP takes about $O(n/\epsilon)$ time. Total runtime is $O(... + n/8 + n/4 + n/2 + ... + n/\epsilon) = O(n/\epsilon)$. Independent of # of iterations

Oracle Query Till U/L<2



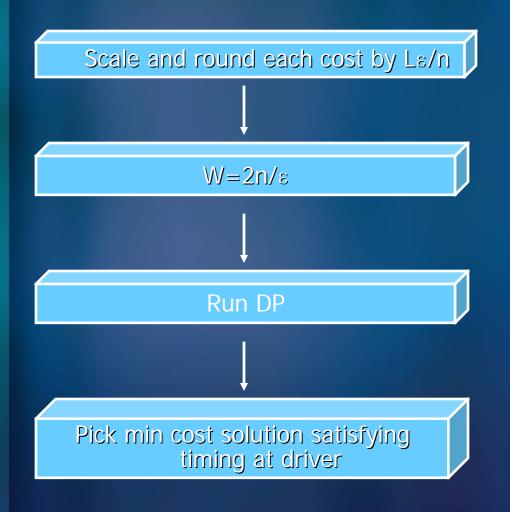
$$\frac{W_{u,i+1}^*}{W_{l,i+1}^*} = \left(\frac{W_{u,i}^*}{W_{l,i}^*}\right)^{3/4} \Rightarrow \frac{W_{l,i}^*}{W_{u,i}^*} = \left(\frac{W_{l,i}^*}{W_{u,i}^*}\right)^{4/3} \Rightarrow \frac{W_{l,i}^*}{W_{u,i}^*} \Rightarrow \frac{W_{l,i}^*}{W_{u,i}^*} \Rightarrow \frac{W_$$

$$O(mn^{2} \sum_{1 \leq i \leq t} \frac{1}{\mathcal{E}_{i}^{'}}) = O(mn^{2} \sum_{1 \leq i \leq t} \sqrt{\frac{W_{l,i}^{*}}{W_{u,i}^{*}}}) = O(mn^{2} \sum_{1 \leq i \leq t} \left(\frac{W_{l,i}^{*}}{W_{u,i}^{*}}\right)^{1/2 \cdot (4/3)^{t-i}})$$

$$O(mn^{2} \sum_{0 \le j < t} \left(\frac{W_{l,i}^{*}}{W_{u,i}^{*}}\right)^{1/2 \cdot (4/3)^{j}}) = O(mn^{2} \sum_{0 \le j < t} \left(0.59^{1/2 \cdot (4/3)^{j}}\right)) = O(mn^{2})$$

First adaptive the adaptive resolvation programs to that the contract of the

When U/L<2

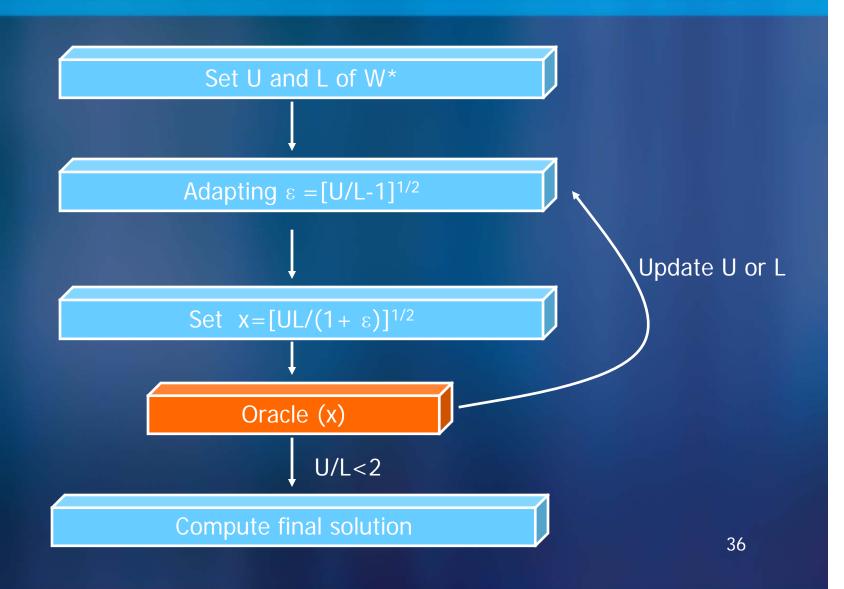


- At least one feasible solution, otherwise no solution w/ cost 2n/ε · Lε/n = 2L ≥ U
- Runs in O(mn²/ε)time

FPTAS for Layer Assignment

Theorem: a $(1+\epsilon)$ approximation to the timing constrained minimum cost layer assignment problem can be computed in $O(mn^2/\epsilon)$ time for any $\epsilon>0$.

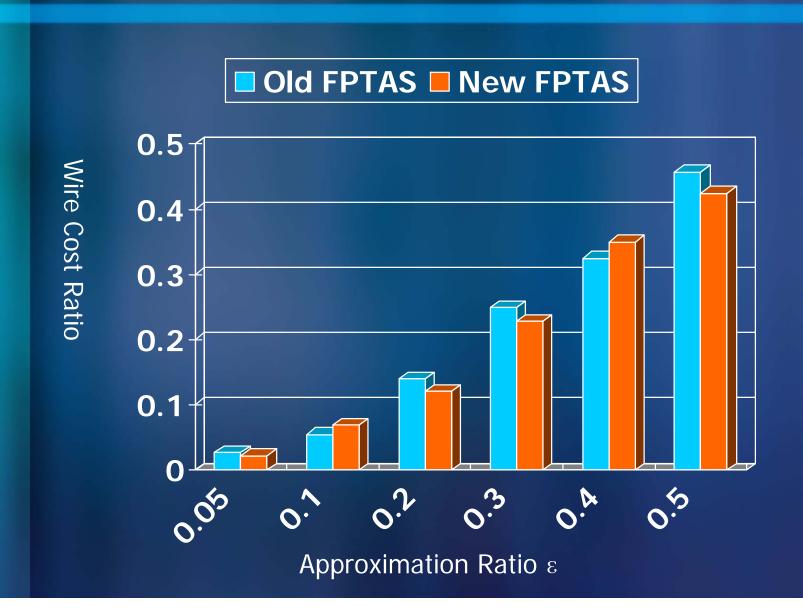
The Algorithmic Flow



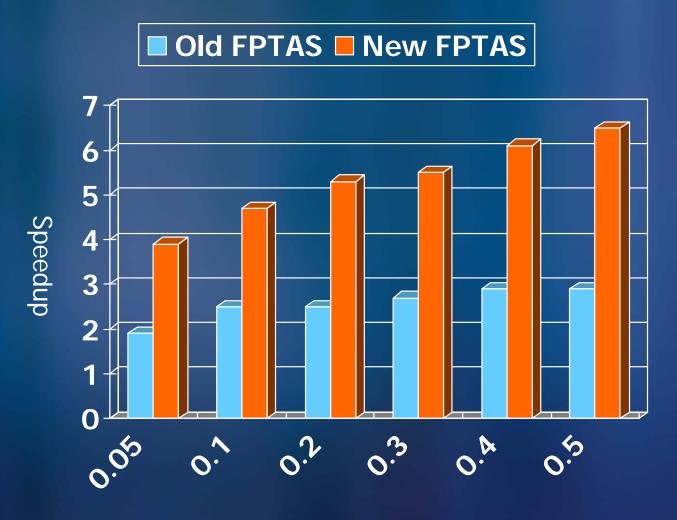
Experiments

- Experimental Setup
 - 1000 industrial nets
- Compared to Dynamic Programming and the previous FPTAS [ICCAD'08]

Cost Ratio Compared to DP



Speedup Compared to DP



Observations

- FPTAS always achieves the theoretical guarantee
- Larger ε leads to more speedup
- 3.9x faster with 2.2% additional wire area compared to DP
- Up to 6.5x faster than DP
- On average about 2x faster than previous FPTAS

Conclusion

- Propose a (1+ ϵ) approximation for timing constrained layer assignment for any $\epsilon > 0$ running in $O(mn^2/\epsilon)$ time
 - Linear time DP running in O(mnW) time
 - Bound independent oracle query
 - Up to 6.5x faster than DP and 2x faster than previous FPTAS
 - Few percent additional wire area compared to DP as guaranteed theoretically

Thanks