
A Faster Approximation Scheme for Timing 
Driven Minimum Cost Layer Assignment

A Faster Approximation Scheme for Timing 
Driven Minimum Cost Layer Assignment

Shiyan HuShiyan Hu*, *, ZhuoZhuo Li**, and Charles J. Alpert**Li**, and Charles J. Alpert**
*Dept of ECE, Michigan Technological University*Dept of ECE, Michigan Technological University

**IBM Austin Research Lab**IBM Austin Research Lab



2

OutlineOutline



3

Layer AssignmentLayer Assignment

11XX

22XX

44XX

In 45nm technology, layer assignment is critical for In 45nm technology, layer assignment is critical for 
timing and buffer area optimizationtiming and buffer area optimization



4

Wire RC and DelayWire RC and Delay

0

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7

wire length

w
ire

 d
el

ay M2
M4
M6

Wire in higher Wire in higher 
layer has much layer has much 
smaller delaysmaller delay

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

R
es

is
ta

nc
e

M2 M4 M6

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

C
ap

ac
it

an
ce

M2 M4 M6



5

Impact to BufferingImpact to Buffering

A buffer can A buffer can 
drive longer drive longer 
distance in distance in 
higher layer higher layer 

Timing is Timing is 
improvedimproved
Fewer buffers Fewer buffers 
are neededare needed



6

Impact to Routing/BufferingImpact to Routing/Buffering

IPIP

IPIP



7

Problem FormulationProblem Formulation

Find a Find a minimal costminimal cost layer assignment such that the layer assignment such that the 
timing constraint is satisfied.timing constraint is satisfied.

Same LayerSame Layer

Can be different Can be different 
layerslayers

GivenGiven
–– A buffered Steiner tree A buffered Steiner tree 

with n wire segmentswith n wire segments
–– Timing constraintTiming constraint
–– m wire layers with RC m wire layers with RC 

parameters and costparameters and cost

A layer refers to a pair of horizontal and vertical A layer refers to a pair of horizontal and vertical 
layers with similar RC characteristicslayers with similar RC characteristics
Between any buffers, one layer is usedBetween any buffers, one layer is used
In early design stage, when buffering effect is In early design stage, when buffering effect is 
considered, wire shaping is not important [Alpert considered, wire shaping is not important [Alpert 
TCADTCAD’’01]01]
In postIn post--routing stage, wire shaping could improve routing stage, wire shaping could improve 
timing, reduce timing, reduce viasvias and reduce coupling and so and reduce coupling and so 
forthforth



Fully Polynomial Time 
Approximation Scheme (FPTAS)
Fully Polynomial Time Fully Polynomial Time 
Approximation Scheme (FPTAS)Approximation Scheme (FPTAS)

8

A Fully Polynomial Time A Fully Polynomial Time 
Approximation SchemeApproximation Scheme

•• Provably goodProvably good
•• Within (1+Within (1+ɛɛ) ) 
optimal cost for any optimal cost for any 
ɛɛ>0>0
•• Runs in time Runs in time 
polynomial in n polynomial in n 
(segments), m (layers) (segments), m (layers) 
and 1/and 1/ɛɛ
•• Ultimate solution for Ultimate solution for 
an NPan NP--hard problem hard problem 
in theoryin theory
•• Highly practicalHighly practical

11XX

22XX

44XX



Previous Work in ICCAD’08Previous Work in ICCAD’08

It depends on MIt depends on M and uses a DP of O(mand uses a DP of O(mnn33//ɛɛ22) time) time

9

Bound independent oracle 
query

Our DP needs one run for 
all W

New FPTAS runs in O(mnNew FPTAS runs in O(mn22//ɛɛ) time) time

Ratio between upper and Ratio between upper and 
lower bounds of the cost of lower bounds of the cost of 
optimal layer assignmentoptimal layer assignment

An iterative DP with An iterative DP with 
incremental Wincremental W



1010

The Rough PictureThe Rough Picture

W*: the cost of optimal solutionW*: the cost of optimal solution

Check it

Make guess on W*

Return the solution

Good (close to W*)

Not 
Good

Key 2: Smart guessKey 1: Efficient checking



11

Key 1: Efficient CheckingKey 1: Efficient Checking

Benefit of guessBenefit of guess
•• Only maintain the Only maintain the 
solutions with cost solutions with cost 
no greater than the no greater than the 
guessed costguessed cost
•• Accelerate DPAccelerate DP



Oracle (x): the checker, able to decide whether  xOracle (x): the checker, able to decide whether  x>>W* or notW* or not
–– Without knowing W*Without knowing W*
–– Answer efficientlyAnswer efficiently

1212

The OracleThe Oracle

Oracle (x)

Guess x within the bounds

Setup upper and lower bounds of cost W*

Update the 
bounds



1313

Construction of Oracle(x)Construction of Oracle(x)

Scale and round Scale and round 
each wire costeach wire cost

⎥⎦
⎥

⎢⎣
⎢=

nx
ww
/ε

Only interested in Only interested in 
whether there is a whether there is a 
solution with cost solution with cost 
up to x satisfying up to x satisfying 
timing constrainttiming constraint

Dynamic Dynamic 
ProgrammingProgramming

Perform DP to Perform DP to 
scaled problem scaled problem 
with cost bound with cost bound 
n/n/ɛɛ. Time . Time 
polynomial in n/polynomial in n/ɛɛ



14

Scaling and RoundingScaling and Rounding

xɛɛ/n 2xɛɛ/n 3xɛɛ/n 4xɛɛ/n

Wire cost

0

Wire cost is integer after 
scaling and rounding with 
upper bound n/ɛ. Total # 
solutions is bounded in DP

Rounding error at each wire Rounding error at each wire 
≤xɛɛ/n, total rounding error , total rounding error ≤xɛɛ. . 

•• Larger x: larger error, fewer Larger x: larger error, fewer 
distinct costs and faster distinct costs and faster 
•• Smaller x: smaller error, more Smaller x: smaller error, more 
distinct costs and slower distinct costs and slower 
•• Rounding is the reason of Rounding is the reason of 
accelerationacceleration



Dynamic Programming ResultsDynamic Programming Results

15

Yes, there is a solution 
satisfying timing constraint

No, no such solution

With cost rounding 
back, the solution has 
cost at most n/ɛ • xɛ/n 

+ xɛ= (1+ɛ)x > W*

With cost rounding 
back, the solution has 
cost at least n/ɛ • xɛ/n 

= x ≤ W*

DP result w/ all w are integers ≤ n/ɛ



16

Solution CharacterizationSolution Characterization

To model effect to To model effect to 
upstream, a upstream, a 
candidate solution candidate solution 
is associated withis associated with

•• v: a nodev: a node
•• Q: required arrival Q: required arrival 

timetime
•• W: cumulative W: cumulative 

wire costwire cost



17

Cost (W)-Bounded Dynamic 
Programming (DP)
Cost (W)-Bounded Dynamic 
Programming (DP)

Candidate solutions are 
propagated toward the source

Start from sinks
Candidate solutions 
are generated  
Two operations
– Subtree

processing
– Solution update 

at buffer

Solution Pruning



18

Subtree ProcessingSubtree Processing

Three pathsThree paths
–– ppaa: a : a --> u> u
–– PPbb: b : b --> u> u
–– PPcc: c : c --> u> u

QQuu(l)=min{(l)=min{QQaa--d(pd(paa,l),,l),QQbb--
d(d(ppbb,l),Q,l),Qcc--d(pd(pcc,l)},l)}
WWuu(l)=(l)=WWaa++WWbb++WWcc+w(T,l)+w(T,l)
Wires are in the same Wires are in the same 
layer llayer l

((QQuu,W,Wuu))

((QQaa,,WWaa))
((QQbb,,WWbb))

((QQcc,,WWcc))



19

Exponential # of SolutionsExponential # of Solutions

W (=n/W (=n/ɛɛ) solutions ) solutions 
at each downstream at each downstream 
bufferbuffer
NaNaïïveve merging takes merging takes 
O(WO(Wkk) time with k ) time with k 
branchesbranches

((QQaa,1,1,,WWaa,1,1))

((QQaa,2,2,,WWaa,2,2))

((QQaa,3,3,,WWaa,3,3))

((QQaa,4,4,,WWaa,4,4))

((QQuu,,WWaa))

((QQbb,1,1,,WWbb,1,1))

((QQbb,2,2,,WWbb,2,2))

((QQbb,3,3,,WWbb,3,3))

((QQbb,4,4,,WWbb,4,4))

((QQc,1c,1,,WWcc,1,1))

(Q(Qc,2c,2,,WWcc,2,2))

(Q(Qc,3c,3,,WWcc,3,3))

(Q(Qc,4c,4,,WWcc,4,4))

kk

For two solutions at a node with the same For two solutions at a node with the same 
W, the one with smaller Q is dominatedW, the one with smaller Q is dominated
Try to only generate nonTry to only generate non--dominated dominated 
solutions since most of O(Wsolutions since most of O(Wkk) solutions ) solutions 
are dominated solutionsare dominated solutions



20

Multi-Way MergingMulti-Way Merging

If best Q for cost w is obtained by merging If best Q for cost w is obtained by merging 
Q(aQ(a11

i1i1), Q(a), Q(a22
i2i2),..., Q(a),..., Q(akk

ikik)), where i, where i11+i+i22++……iikk=w, =w, 
best Q for cost w+1 is obtained bybest Q for cost w+1 is obtained by

maxmax 1 1 ≤ rr ≤ kk min {Q(amin {Q(a11
i1i1),Q(a),Q(a22

i2i2),..., Q(a),..., Q(arr
ir+1ir+1), ...,Q(a), ...,Q(akk

ikik)})}



Four-Branch ExampleFour-Branch Example

21

Solution(w=8, Q=9) is shown. Solution(w=8, Q=9) is shown. 
To compute Solution (w=9, Q)To compute Solution (w=9, Q)



Four-Branch Example – Case 1Four-Branch Example – Case 1

22

Candidate Solution (w=9, Q=8)Candidate Solution (w=9, Q=8)



Four-Branch Example – Case 2Four-Branch Example – Case 2

23

Candidate Solution (w=9, Q=4)Candidate Solution (w=9, Q=4)



Four-Branch Example – Case 3Four-Branch Example – Case 3

24

Candidate Solution (w=9, Q=5)Candidate Solution (w=9, Q=5)



Four-Branch Example – Case 4Four-Branch Example – Case 4

25

Candidate Solution (w=9, Q=7)Candidate Solution (w=9, Q=7)



Linear Time Multi-Way MergingLinear Time Multi-Way Merging

26

Lemma: given a Lemma: given a subtreesubtree with m layers, k with m layers, k 
branches and W nonbranches and W non--dominated solutions at each dominated solutions at each 
downstream buffer, one can merge them in downstream buffer, one can merge them in 
O(O(mkWmkW) time.) time.



Solution Update at BufferSolution Update at Buffer

27

After merging, one nonAfter merging, one non--
dominated solution per dominated solution per 
layer per cost, totally layer per cost, totally 
O(O(mWmW) solutions) solutions
For each cost, find For each cost, find 
largest Q for all layers largest Q for all layers 
after buffer and after buffer and 
propagate itpropagate it

((QQuu,W,Wuu))

((QQaa,,WWaa))
((QQbb,,WWbb))

((QQcc,,WWcc))



28

Cost-Bounded DPCost-Bounded DP

Lemma: given a tree with n wire segments and Lemma: given a tree with n wire segments and 
m layers, the optimal layer assignment subject m layers, the optimal layer assignment subject 
to cost budget W=n/to cost budget W=n/ɛɛ can be computed in can be computed in 
O(O(mnWmnW)=O(mn)=O(mn22//ɛɛ) time.) time.



29

Key 2: Bound Independent GuessKey 2: Bound Independent Guess

U (L): upper (lower) bound on W*U (L): upper (lower) bound on W*
Naive binary search style approachNaive binary search style approach

Runtime depends on the initial bounds U and LRuntime depends on the initial bounds U and L

Oracle (x)

x=(U+L)/2 and W=n/ɛɛ

Set U and L on W*

U= (1+(1+ɛɛ)x)x L= x

W*<(1+W*<(1+ɛɛ)x)x W* W* ≥≥ xx



30

Adapt ɛAdapt Adapt ɛɛ

Rounding factor xɛɛ/n for cost
Larger Larger ɛɛ: faster with : faster with rough estimationrough estimation
Smaller Smaller ɛɛ: slower with : slower with accurate estimationaccurate estimation
Adapt Adapt ɛɛ and relate it with U and Land relate it with U and L



31

U/L Related Scale & RoundU/L Related Scale & Round

Wire cost

0
U/L

xɛ/nxɛ/n



32

ConceptuallyConceptually

Begin with large Begin with large ɛɛ’’ and progressively reduce it and progressively reduce it 
according to U/L as x approaches W*according to U/L as x approaches W*

•• Set Set ɛɛ’’ as a geometric sequence of …, 8, 4, 2, 1, 
1/2, …, ɛɛ
• One run of DP takes about O(n/ɛɛ) time. Total Total 
runtime is O(runtime is O(…… + n/8 + n/4 + n/2 + + n/8 + n/4 + n/2 + …… + n/+ n/ɛɛ) = ) = 
O(n/O(n/ɛɛ). Independent of # of iterations). Independent of # of iterations



Oracle Query Till U/L<2Oracle Query Till U/L<2

33

'

*
,

*
,

*
,

*
,'

1
 ,1

i

iliu

il

iu
i

WW
x

W
W

ε
ε

+
⋅

=−=

)()()1(
)3/4(2/1

1
*
,

*
,2

1
*
,

*
,2

1
'

2

it

ti iu

il

ti iu

il

ti i W
W

mnO
W
W

mnOmnO

−⋅

≤≤≤≤≤≤
∑∑∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

ε

( ) )() 59.0()( 2

0

)3/4(2/12

)3/4(2/1

0
*
,

*
,2 mnOmnO

W
W

mnO
tjtj iu

il j

j

==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑∑

<≤

⋅

⋅

<≤

it

tu

tl

iu

il

iu

il

iu

il

il

iu

il

iu

W
W

W
W

W
W

W
W

W
W

W
W

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⇒⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⇒⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

+

)3/4(

*
,

*
,

*
,

*
,

3/4

*
,

*
,

*
,

*
,

4/3

*
,

*
,

*
1,

*
1,



When U/L<2When U/L<2

34

At least one At least one 
feasible solution, feasible solution, 
otherwise no otherwise no 
solution w/ cost solution w/ cost 
2n/2n/ɛɛ • LLɛɛ/n = 2L  /n = 2L  
≥≥ UU
Runs in O(mnRuns in O(mn22//ɛɛ) ) 
timetime

Pick min cost solution satisfying Pick min cost solution satisfying 
timing at drivertiming at driver

W=2n/W=2n/ɛɛ

Scale and round each cost by LScale and round each cost by Lɛɛ/n/n

Run DP



35

FPTAS for Layer AssignmentFPTAS for Layer Assignment

Theorem: a (1+ Theorem: a (1+ ɛɛ) approximation to the timing ) approximation to the timing 
constrained minimum cost layer assignment  constrained minimum cost layer assignment  
problem can be computed in O(mnproblem can be computed in O(mn22//ɛɛ) time for ) time for 
any any ɛɛ>0.>0.



36

The Algorithmic FlowThe Algorithmic Flow

Oracle (x)

Adapting ɛ =[U/L-1]1/2

Set U and L of W*

Set  x=[UL/(1+ ɛ)]1/2

Update U or L

U/L<2

Compute final solution



37

ExperimentsExperiments

Experimental SetupExperimental Setup
–– 1000 industrial nets 1000 industrial nets 

Compared to Dynamic Programming Compared to Dynamic Programming 
and the previous FPTAS [ICCADand the previous FPTAS [ICCAD’’08]08]



3838

Cost Ratio Compared to DPCost Ratio Compared to DP

Approximation Ratio ɛ

W
ire Cost R

atio

0

0.1

0.2

0.3

0.4

0.5

0.0
5

0.1 0.2 0.3 0.4 0.
5

Old FPTAS New FPTAS



3939

Speedup Compared to DPSpeedup Compared to DP

Approximation Ratio ɛ

Speedup

0
1
2
3
4
5
6
7

0.0
5

0.1 0.2 0.3 0.4 0.5

Old FPTAS New FPTAS



40

ObservationsObservations

FPTAS always achieves the theoretical guaranteeFPTAS always achieves the theoretical guarantee

Larger Larger ɛɛ leads to more speedupleads to more speedup

3.9x faster with 2.2% additional wire area compared to DP3.9x faster with 2.2% additional wire area compared to DP
Up to 6.5x faster than DPUp to 6.5x faster than DP
On average about 2x faster than previous FPTASOn average about 2x faster than previous FPTAS



41

ConclusionConclusion

Propose a (1+ Propose a (1+ ɛɛ) approximation for timing ) approximation for timing 
constrained layer assignment for any constrained layer assignment for any ɛɛ > 0 running > 0 running 
in O(mnin O(mn22//ɛɛ) time) time
–– Linear time DP running in O(Linear time DP running in O(mnWmnW) time) time
–– Bound independent oracle queryBound independent oracle query
–– Up to 6.5x faster than DP and 2x faster than Up to 6.5x faster than DP and 2x faster than 

previous FPTASprevious FPTAS
–– Few percent additional wire area compared to Few percent additional wire area compared to 

DP as guaranteed theoreticallyDP as guaranteed theoretically



42

Thanks


