
Institute of Computer Science and Engineering, National Chiao Tung University

Critical-Trunk Based Obstacle-Avoiding
Rectilinear Steiner Tree Routings for Delay

and Slack Optimization

ISPD-2009

Yen-Hung Lin, Shu-Hsin Chang, Yih-Lang Li

Dept. of CSIE, National Chiao Tung University

Institute of Computer Science and Engineering, National Chiao Tung University 2

OUTLINE
• Introduction

• Critical-Trunk Based Tree Growth

• Performance-Driven OARST

• Slack-Driven OARST

• Experimental Results

• Conclusions

Institute of Computer Science and Engineering, National Chiao Tung University 3

INTRODUCTION
• OARST: Obstacle-Avoiding Rectilinear Steiner Tree

• Conventional OARST:

• To minimize total wirelength

• Maze-routing based manner

• Spanning-graph based manner

• Global view about pins and obstacles

• Non-intersecting property

• Minimization of wirelength may worsen the performance.

• Objectives:

• To construct an OARST and consider delay simultaneously

• To adopt routing algorithm in spanning-graph based manner

Institute of Computer Science and Engineering, National Chiao Tung University 4

RELATION BETWEEN
RADIUS AND DELAY

Figure 1. Relation between radius and delay in Shortest Path Tree (SPT)

Figure 2. Relation between radius and delay in Minimal Steiner Tree (MST)

(a)

(a)

(b)

(b)

driver driver

driver driver

Institute of Computer Science and Engineering, National Chiao Tung University 5

CRITICAL-TRUNK
BASED TREE GROWTH

Figure 3. Ideal tree topology for critical-trunk based tree growth

D
Driver

Critical sinkCritical trunk
Large-radius sink

Small subtree

Large subtree

Elmore delay model

Institute of Computer Science and Engineering, National Chiao Tung University 6

PERFORMANCE-DRIVEN OARST
• To minimize the maximum sink’s delay

• Overall flow of PDOARST:

•

[11] J. Long, H. Zhou, and S. O. Memik, “An O(nlogn) edge-based algorithm for obstacle-avoiding
rectilinear Steiner tree construction,” Proceedings of Intl. Symposium on Physical Design, pp. 126-133, 2008.

Obstacle-Avoiding Spanning Graph Construction [11]

Performance-Driven Critical Trunk Growth

Performance-Driven Subtree Growth

Rectilinearization

Institute of Computer Science and Engineering, National Chiao Tung University 7

PERFORMANCE-DRIVEN
CRITICAL TRUNK GROWTH

• 2-pin net generation for routing algorithms

• Multi-source single-target maze routing

5

D

4

2

1

3

Figure 4. Performance-driven critical trunk growth

D : Driver : Sink

: Obstacle corner

D 11.

D 52.

453.

D 24.

325.

source window

Institute of Computer Science and Engineering, National Chiao Tung University 8

PERFORMANCE-DRIVEN
CRITICAL TRUNK GROWTH

• Identification of performance-driven critical trunks

• PDCTF: Performance-driven criticality threshold
factor

•

• PDCR: Performance-driven Critical Radius

•

• A sink is critical if its radius exceeds PDCR.

average sink delay
worst sink delay

PDCTF =

max()PDCR PDCTF radius= ×

Institute of Computer Science and Engineering, National Chiao Tung University 9

PERFORMANCE-DRIVEN
SUBTREE GROWTH

• Delay penalty factor (PDF)

• To make the tree topology similar to the ideal one.

• max

,
()

0,

i
cr

R i N
RDPF i

otherwise

⎧ ∈⎪= ⎨
⎪⎩

Figure 5. DPF and DPF inheritance

(a) (b)D

Critical sink

D

Critical sink
1.0

0.6

0.20

0
0

0.2

0.6
0.2

Institute of Computer Science and Engineering, National Chiao Tung University 10

PERFORMANCE-DRIVEN
SUBTREE GROWTH

• A* search like function

•

•

() () ()f x g x h x= +
2() () (1)sx dsg x dist dist DPF s PDCTF= + × × −

(a) PDCTF=0.854 (b) PDCTF=0.473

Figure 6. The relation between performance-driven critical trunk & PDCTF

Institute of Computer Science and Engineering, National Chiao Tung University 11

PERFORMANCE-DRIVEN
vs. SLACK-DRIVEN

Figure 7. Steiner tree with different objective

(a) Minimizing the maximum delay (b) Satisfying the timing constraint

D

M

C

D

M

C

Allow larger delay!

Require smaller delay!

Institute of Computer Science and Engineering, National Chiao Tung University 12

SLACK-DRIVEN OARST
• To maximize the worst negative slack (WNS)

• Overall flow of SDOARST:

Obstacle-Avoiding Spanning Graph Construction [11]

Slack-Driven Critical Trunk Growth

Slack-Driven Subtree Growth

Rectilinearization

Redirection

Institute of Computer Science and Engineering, National Chiao Tung University 13

SLACK-DRIVEN
CRITICAL TRUNK GROWTH

• Sinks with smaller slacks prefer small delays.
• To guide 2-pin net generation with slack

D

Figure 8. Slack-driven critical trunk growth

D : Driver

: Sink

: Obstacle corner

),(qpdist

max

min)(),(
slack

slackqslackqpdist −
×

Institute of Computer Science and Engineering, National Chiao Tung University 14

SLACK-DRIVEN
CRITICAL TRUNK GROWTH

• Identification of slack-driven critical trunks

• To compute priority of each sink

•

• Small priority means that the attached sink has
higher possibility to violate timing constraints.

• SDCP: Slack-Driven Critical Priority

• Average priority of all sinks

() () ()priority i slack i delay i= −

Institute of Computer Science and Engineering, National Chiao Tung University 15

SLACK-DRIVEN
SUBTREE GROWTH

• Slack determines principally the allowable delay of a sink.

• Single-source single-target maze routing

Figure 9. Slack-driven subtree growth

5

D

4

2

1

3

D : Driver

: Sink

: Obstacle corner

Timing constraint
violation!

Institute of Computer Science and Engineering, National Chiao Tung University 16

REDIRECTION

WNS sink exists?WNS sink exists?

DisconnectionDisconnection

Candidate Decision & ReconnectionCandidate Decision & Reconnection

RectilinearizationRectilinearization

Timing AnalysisTiming Analysis

Continue?Continue? TerminationTermination

No

Yes

Yes No

Figure 10. Flow of redirection mechanism

Institute of Computer Science and Engineering, National Chiao Tung University 17

EXPERIMENTAL RESULTS
• Platforms

1. A PC with 2.1 GHz AMD Athlon 64 Dual Core CPU
and 1.5GB memory

2. A workstation with 1.2 GHz CPU and 4GB memory

• Benchmarks

100001000rc12500100rc06
1001000rc1110100rc05
100500rc101070rc04

1000200rc091050rc03
800200rc081030rc02
500200rc071010rc01
ObsPinCaseObsPinCase

Table 1. The statistics of benchmarks

Institute of Computer Science and Engineering, National Chiao Tung University 18

ROUTING BASED
TREE CONSTRUCTION

• To simplify the PDOARST only considering wirelength

• To compare with works which minimize the total
wirelength

• [9] Z. Shen, C. C. N. Chu, and Y.-M. Li, “Efficient rectilinear Steiner tree construction
with rectilinear blockages,” Proceedings of IEEE Intl. Conference on Computer Design,
pp. 38-44, Oct. 2005.

• [10] C.-W. Lee, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang, “Obstacle-avoiding
rectilinear Steiner tree construction based on spanning graph,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 4, pp. 643-653,
Apr. 2008.

• [11] J. Long, H. Zhou, and S. O. Memik, “An O(nlogn) edge-based algorithm for
obstacle-avoiding rectilinear Steiner tree construction,” Proceedings of Intl. Symposium
on Physical Design, pp. 126-133, 2008

Institute of Computer Science and Engineering, National Chiao Tung University 19

ROUTING BASED
TREE CONSTRUCTION

0.163.173.79-0.01-2.050.34Ave.
0.3719.2314.392.89-0.69-8.06-1.72858310rc12
-0.207.605.400.10-1.30-.096-0.33238905rc11
0.005.336.670.03-1.020.050.50170600rc10
0.601.533.800.150.41-3.24-0.26120062rc09
0.672.335.220.091.50-3.460.29123004rc08
0.171.175.500.06-0.90-3.030.54116801rc07
0.330.833.500.061.31-3.400.1286299rc06
0.000.001.000.01-1.31-1.29-0.4777330rc05
0.000.000.000.01-1.91-0.590.2160710rc04
0.000.000.000.01-0.16-0.730.5056160rc03
0.000.000.000.01-0.59-0.171.3242280rc02
0.000.000.000.012.720.340.3426810rc01

[11]
spdup (%)

[10]
spdup (%)

[9]
spdup (%)

our OARST
(s)

[11]
diff (%)

[10]
diff (%)

[9]
diff (%)

our OARST
(um)

RuntimeWirelength
Case

- [*] diff of wirelength = ([*]-ours)/ours ×100. - [*] spdup of runtime = [*]/ours-1.

Table 2. Comparison between wirelength and runtimes

Institute of Computer Science and Engineering, National Chiao Tung University 20

PERFORMANCE-DRIVEN
OARST

Case
Wirelength WorstDelay Runtime

our OARST
(um)

PD
diff (%)

our OARST
(ps)

PD
diff (%)

our OARST
(s)

PD
diff (1X)

rc01 26810 8.69 3709.40 -8.78 0.01 0.00
rc02 42280 -0.50 4757.91 -0.85 0.01 1.00
rc03 56160 8.53 8906.42 -35.91 0.01 0.00
rc04 60710 11.55 8124.20 -31.81 0.02 -0.50
rc05 77330 12.17 11690.13 -39.79 0.03 0.00
rc06 86299 5.19 10685.59 -2.99 0.21 0.71
rc07 116801 5.19 13450.84 -12.69 0.20 1.80
rc08 123004 4.71 16169.9 -21.87 0.29 2.21
rc09 120062 12.62 20957.15 -19.98 0.59 1.88
rc10 170600 2.87 25946.16 -33.25 0.11 2.36
rc11 238905 2.37 36459.46 -16.92 0.38 1.21
rc12 858310 39.84 464903.00 -64.58 15.95 8.41
Ave. 9.44 -24.12 1.59

Table 3. Comparison between wirelength, worst delays, and runtimes
of our simplified OARST and PDOARST

Institute of Computer Science and Engineering, National Chiao Tung University 21

SLACK-DRIVEN OARST

Case
Wirelength WorstDelay WNS Runtime

PD
(um)

SD
diff (%)

PD
(ps)

SD
diff (%)

PD
(ps)

SD
imp (%)

PD
(s)

SD
diff (1X)

rc01t 29140 3.88 3383.65 -9.08 -635.78 100 0.01 0.00
rc02t 42070 14.67 4717.57 -3.87 -1669.34 67.60 0.02 -0.50
rc03t 60590 7.66 5708.50 20.82 -924.33 39.05 0.01 0.00
rc04t 67720 15.39 5540.01 5.18 -651.98 100 0.01 0.00
rc05t 86740 12.23 7038.70 -2.42 -148.84 100 0.03 -0.33
rc06t 90777 34.33 10365.80 -8.64 -671.98 100 0.36 0.19
rc07t 122858 44.67 11744.40 7.78 -189.52 100 0.56 0.29
Rc08t 128803 41.07 12634.00 3.38 0 0 0.93 0.60
rc09t 135215 31.70 16769.19 -11.82 -3687.34 100 1.7 -0.17
rc10t 175500 18.83 17319.80 -12.49 -2912.73 100 0.37 -0.24
rc11t 244572 17.09 30291.00 -32.79 -9966.89 95.09 0.84 -0.12
rc12t 1200290 18.69 164655.00 -4.54 -32595 96.55 150.12 0.10
Ave. 21.68 -4.04 83.19 -0.02

Table 4. Comparison between wirelength, worst delays, WNSs, and
runtimes of PDOARST and SDOARST

Institute of Computer Science and Engineering, National Chiao Tung University 22

CONCLUSIONS
• We apply an routing algorithm to construct Steiner tree in

spanning-graph based approach.

• We propose a critical-trunk based tree growth
mechanism.

• We construct an obstacle-avoiding rectilinear Steiner
tree with different objective.

• Minimization of maximum delay

• Maximization of the worst negative slack

