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INTRODUCTION
• OARST: Obstacle-Avoiding Rectilinear Steiner Tree

• Conventional OARST:

• To minimize total wirelength

• Maze-routing based manner

• Spanning-graph based manner

• Global view about pins and obstacles

• Non-intersecting property

• Minimization of wirelength may worsen the performance.

• Objectives:

• To construct an OARST and consider delay simultaneously

• To adopt routing algorithm in spanning-graph based manner
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RELATION BETWEEN 
RADIUS AND DELAY

Figure 1. Relation between radius and delay in Shortest Path Tree (SPT)

Figure 2. Relation between radius and delay in Minimal Steiner Tree (MST)
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CRITICAL-TRUNK 
BASED TREE GROWTH

Figure 3. Ideal tree topology for critical-trunk based tree growth
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PERFORMANCE-DRIVEN OARST
• To minimize the maximum sink’s delay

• Overall flow of PDOARST:

•

[11]  J. Long, H. Zhou, and S. O. Memik, “An O(nlogn) edge-based algorithm for obstacle-avoiding 
rectilinear Steiner tree construction,” Proceedings of Intl. Symposium on Physical Design, pp. 126-133, 2008.

Obstacle-Avoiding Spanning Graph Construction [11]

Performance-Driven Critical Trunk Growth

Performance-Driven Subtree Growth

Rectilinearization
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PERFORMANCE-DRIVEN
CRITICAL TRUNK GROWTH

• 2-pin net generation for routing algorithms

• Multi-source single-target maze routing
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Figure 4. Performance-driven critical trunk growth
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PERFORMANCE-DRIVEN
CRITICAL TRUNK GROWTH

• Identification of performance-driven critical trunks

• PDCTF: Performance-driven criticality threshold 
factor

•

• PDCR: Performance-driven Critical Radius

•

• A sink is critical if its radius exceeds PDCR.

average sink delay
worst sink delay

PDCTF =

max( )PDCR PDCTF radius= ×
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PERFORMANCE-DRIVEN
SUBTREE GROWTH

• Delay penalty factor (PDF)

• To make the tree topology similar to the ideal one.
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Figure 5. DPF and DPF inheritance
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PERFORMANCE-DRIVEN
SUBTREE GROWTH

• A* search like function

•

•

( ) ( ) ( )f x g x h x= +
2( ) ( ) (1 )sx dsg x dist dist DPF s PDCTF= + × × −

(a) PDCTF=0.854 (b) PDCTF=0.473

Figure 6. The relation between performance-driven critical trunk & PDCTF
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PERFORMANCE-DRIVEN
vs. SLACK-DRIVEN 

Figure 7. Steiner tree with different objective

(a) Minimizing the maximum delay (b) Satisfying the timing constraint
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SLACK-DRIVEN OARST
• To maximize the worst negative slack (WNS)

• Overall flow of SDOARST:

Obstacle-Avoiding Spanning Graph Construction [11]

Slack-Driven Critical Trunk Growth

Slack-Driven Subtree Growth

Rectilinearization

Redirection
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SLACK-DRIVEN 
CRITICAL TRUNK GROWTH

• Sinks with smaller slacks prefer small delays.
• To guide 2-pin net generation with slack

D

Figure 8. Slack-driven critical trunk growth

D : Driver

: Sink

: Obstacle corner

),( qpdist

max

min)(),(
slack

slackqslackqpdist −
×



Institute of Computer Science and Engineering, National Chiao Tung University 14

SLACK-DRIVEN 
CRITICAL TRUNK GROWTH

• Identification of slack-driven critical trunks

• To compute priority of each sink

•

• Small priority means that the attached sink has 
higher possibility to violate timing constraints.

• SDCP: Slack-Driven Critical Priority

• Average priority of all sinks

( ) ( ) ( )priority i slack i delay i= −
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SLACK-DRIVEN
SUBTREE GROWTH

• Slack determines principally the allowable delay of a sink.

• Single-source single-target maze routing

Figure 9. Slack-driven subtree growth
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REDIRECTION

WNS sink exists?WNS sink exists?

DisconnectionDisconnection
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Figure 10. Flow of redirection mechanism
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EXPERIMENTAL RESULTS
• Platforms

1. A PC with 2.1 GHz AMD Athlon 64 Dual Core CPU 
and 1.5GB memory

2. A workstation with 1.2 GHz CPU and 4GB memory

• Benchmarks

100001000rc12500100rc06
1001000rc1110100rc05
100500rc101070rc04

1000200rc091050rc03
800200rc081030rc02
500200rc071010rc01
ObsPinCaseObsPinCase

Table 1. The statistics of benchmarks
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ROUTING BASED
TREE CONSTRUCTION

• To simplify the PDOARST only considering wirelength

• To compare with works which minimize the total 
wirelength

• [9] Z. Shen, C. C. N. Chu, and Y.-M. Li, “Efficient rectilinear Steiner tree construction 
with rectilinear blockages,” Proceedings of IEEE Intl. Conference on Computer Design, 
pp. 38-44, Oct. 2005.

• [10] C.-W. Lee, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang, “Obstacle-avoiding 
rectilinear Steiner tree construction based on spanning graph,” IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 4, pp. 643-653, 
Apr. 2008.

• [11] J. Long, H. Zhou, and S. O. Memik, “An O(nlogn) edge-based algorithm for 
obstacle-avoiding rectilinear Steiner tree construction,” Proceedings of Intl. Symposium 
on Physical Design, pp. 126-133, 2008
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ROUTING BASED
TREE CONSTRUCTION

0.163.173.79-0.01-2.050.34Ave.
0.3719.2314.392.89-0.69-8.06-1.72858310rc12
-0.207.605.400.10-1.30-.096-0.33238905rc11
0.005.336.670.03-1.020.050.50170600rc10
0.601.533.800.150.41-3.24-0.26120062rc09
0.672.335.220.091.50-3.460.29123004rc08
0.171.175.500.06-0.90-3.030.54116801rc07
0.330.833.500.061.31-3.400.1286299rc06
0.000.001.000.01-1.31-1.29-0.4777330rc05
0.000.000.000.01-1.91-0.590.2160710rc04
0.000.000.000.01-0.16-0.730.5056160rc03
0.000.000.000.01-0.59-0.171.3242280rc02
0.000.000.000.012.720.340.3426810rc01

[11]
spdup (%)

[10]
spdup (%)

[9]
spdup (%)

our OARST
(s)

[11]
diff (%)

[10]
diff (%)

[9] 
diff (%)

our OARST 
(um)

RuntimeWirelength
Case

- [*] diff of wirelength = ([*]-ours)/ours ×100.            - [*] spdup of runtime = [*]/ours-1.

Table 2. Comparison between wirelength and runtimes
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PERFORMANCE-DRIVEN 
OARST

Case
Wirelength WorstDelay Runtime

our OARST
(um)

PD
diff (%)

our OARST
(ps)

PD
diff (%)

our OARST
(s)

PD
diff (1X)

rc01 26810 8.69 3709.40 -8.78 0.01 0.00
rc02 42280 -0.50 4757.91 -0.85 0.01 1.00
rc03 56160 8.53 8906.42 -35.91 0.01 0.00
rc04 60710 11.55 8124.20 -31.81 0.02 -0.50
rc05 77330 12.17 11690.13 -39.79 0.03 0.00
rc06 86299 5.19 10685.59 -2.99 0.21 0.71
rc07 116801 5.19 13450.84 -12.69 0.20 1.80
rc08 123004 4.71 16169.9 -21.87 0.29 2.21
rc09 120062 12.62 20957.15 -19.98 0.59 1.88
rc10 170600 2.87 25946.16 -33.25 0.11 2.36
rc11 238905 2.37 36459.46 -16.92 0.38 1.21
rc12 858310 39.84 464903.00 -64.58 15.95 8.41
Ave. 9.44 -24.12 1.59

Table 3. Comparison between wirelength, worst delays, and runtimes
of our simplified OARST and PDOARST
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SLACK-DRIVEN OARST

Case
Wirelength WorstDelay WNS Runtime

PD
(um)

SD
diff (%)

PD
(ps)

SD
diff (%)

PD
(ps)

SD
imp (%)

PD
(s)

SD
diff (1X)

rc01t 29140 3.88 3383.65 -9.08 -635.78 100 0.01 0.00
rc02t 42070 14.67 4717.57 -3.87 -1669.34 67.60 0.02 -0.50
rc03t 60590 7.66 5708.50 20.82 -924.33 39.05 0.01 0.00
rc04t 67720 15.39 5540.01 5.18 -651.98 100 0.01 0.00
rc05t 86740 12.23 7038.70 -2.42 -148.84 100 0.03 -0.33
rc06t 90777 34.33 10365.80 -8.64 -671.98 100 0.36 0.19
rc07t 122858 44.67 11744.40 7.78 -189.52 100 0.56 0.29
Rc08t 128803 41.07 12634.00 3.38 0 0 0.93 0.60
rc09t 135215 31.70 16769.19 -11.82 -3687.34 100 1.7 -0.17
rc10t 175500 18.83 17319.80 -12.49 -2912.73 100 0.37 -0.24
rc11t 244572 17.09 30291.00 -32.79 -9966.89 95.09 0.84 -0.12
rc12t 1200290 18.69 164655.00 -4.54 -32595 96.55 150.12 0.10
Ave. 21.68 -4.04 83.19 -0.02

Table 4. Comparison between wirelength, worst delays, WNSs, and 
runtimes of PDOARST and SDOARST
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CONCLUSIONS
• We apply an routing algorithm to construct Steiner tree in 

spanning-graph based approach.

• We propose a critical-trunk based tree growth 
mechanism.

• We construct an obstacle-avoiding rectilinear Steiner 
tree with different objective.

• Minimization of maximum delay

• Maximization of the worst negative slack


