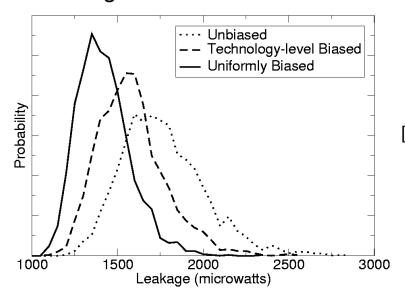


Wire Shaping is Practical

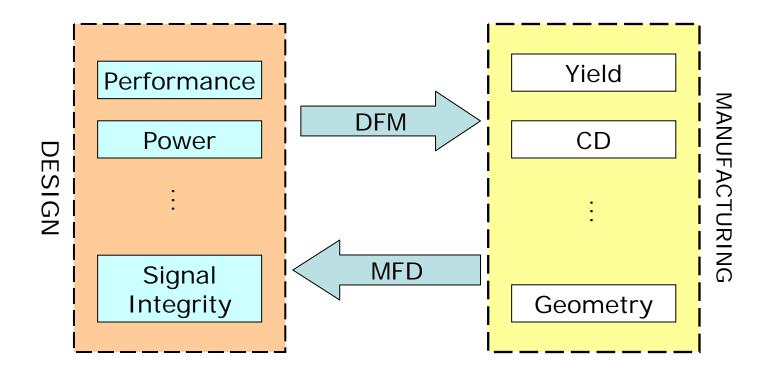
Hongbo Zhang and Martin D.F. Wong, U of Illinois Kai-Yuan (Kevin) Chao, Intel Liang Deng, Broadcom

Overview

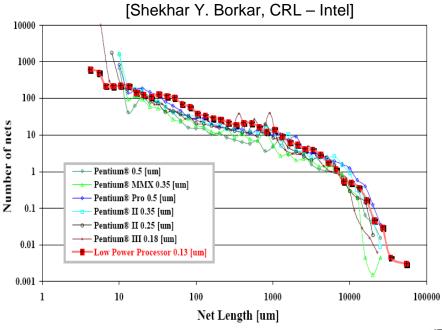

- Practical wire shaping methodology for power minimization
- Manufacturing for design (MFD)
- Minimal design/manufacturing overhead
- Printability analysis of non-uniform wire shape by litho simulations

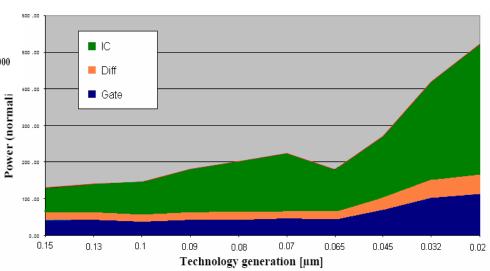
Manufacturing Impact Design

- Manufacturing has inevitable impacts on design
 - CMP → thickness
 - Lithography → pattern
 - Dummy fill → coupling capacitance
- Circuit properties can be modified during manufacturing
 - Poly gate bias for leakage



[Gupta & Kahng DAC04]

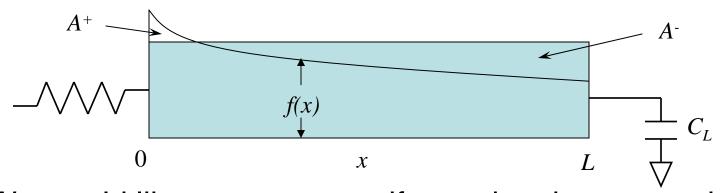

Manufacturing for Design


Interconnect Power Consumption

Reducing dynamic power consumption is important

[Magen, et. al., SLIP04]

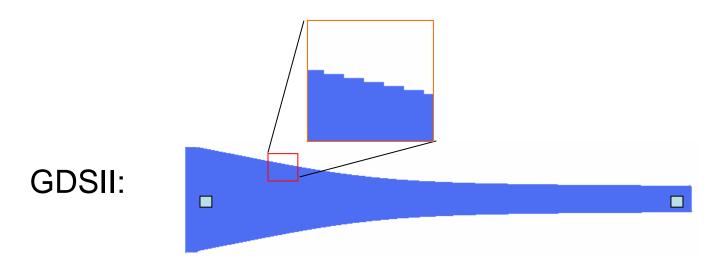
- Dynamic power consumption in interconnect makes up of 53% of the total dynamic power
- The share is increasing



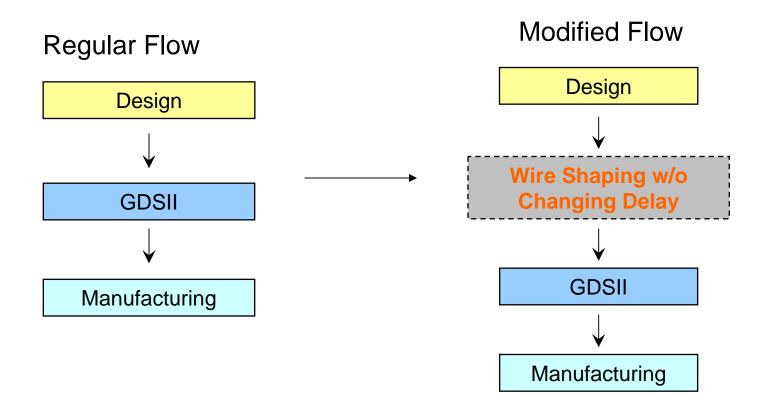
Non-Uniform Wire Shape

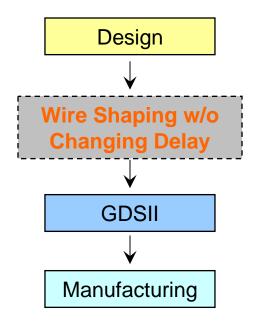
- Non-uniform wire shape was studied for delay minimization (RC depends on wire shape)
- Exponential wire shape has been found to be effective for delay minimization

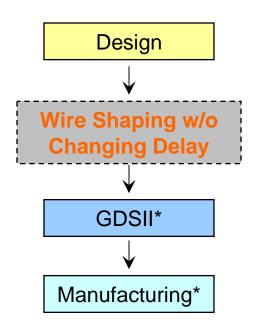
 We would like to use non-uniform wire shape to reduce power


$$\Delta P \propto \Delta C \propto \Delta A = A^+ - A^-$$

Is Non-Uniform Wire Shape Practical?

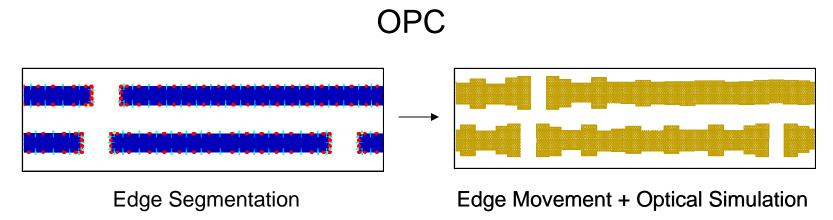

- Non-uniform wire shape was considered not practical
 - Routing tools can not handle it
 - Design database becomes too large
 - DRC issue


A Practical Flow with Wire Shaping



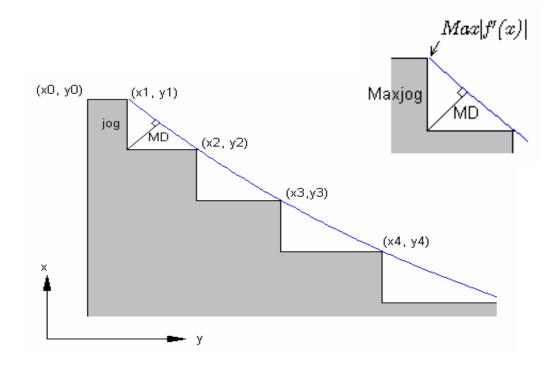
A Practical Flow with Wire Shaping

GDSII size explosion!


GDSII*: GDSII with shape annotation **Manufacturing*:** Minor modification for non-uniform wire shape

Manufacturing Non-Uniform Wire

- Current OPC technology can be easily modified to produce non-uniform wire shape
- OPC edge movement can be targeted for non-uniform wire shape
- Minimal extra cost

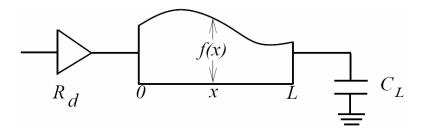


Improved Wire Segmentation for OPC

- Minimize number of stages by an improved wire segmentation scheme
- Can be easily integrated into mainstream OPC tools

Algorithm for Wire Segmentation

- Trade-off between number of segments and error of wire shape approximation
- Minimize number of segments subject to given error bound on shape approximation
- Iterative algorithm
 - Pick next segmentation point by the equation


$$x_{i+1} = x_i + \frac{\max_{j} jog}{f'(x_i)} \sqrt{\frac{f'^2(x_i) + 1}{\max^2 |f'(x)| + 1}}$$

Stage length is monotonically increasing

Exponential Wire Shape

Delay:
$$D(f) = R_d(C_L + \int_0^L c_0 f(x) dx) + \int_0^L \frac{r_0}{f(x)} (\int_x^L c_0 f(t) dt + C_L) dx$$

Dynamic Power:
$$P(f) = \alpha (C_L + c_f L + c_o \int_0^L f(x) dx) V_{DD}^2 f_{clk}$$

Problem: Minimize P(f) s.t. D(f) = delay

Optimal Solution:
$$f(x) = ae^{-bx}$$

Wire Shape Optimization

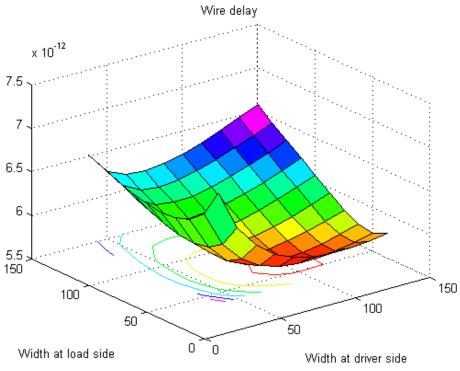
Known: min $D(f) \rightarrow f$ is exponential

Our Problem: min P(f) s.t. D(f) = delay

Equivalent Problem: min P(f) s.t. $D(f) \leq delay$

Can be solved by Lagrangian Relaxation (LR):

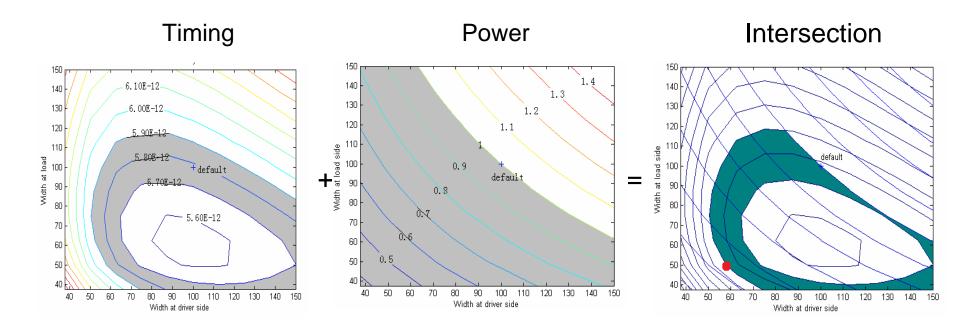
- Discrete version: min $P(y_1, ..., y_n)$ s.t. $D(y_1, ..., y_n) \leq delay$
- Geometric program → Convex → Exactly solved by LR
- Fix $\lambda \geq 0$, solve min $P(y_1, ..., y_n) + \lambda (D(y_1, ..., y_n) delay)$
- Update λ and iterate
- Discrete version \rightarrow Continous version as $n \rightarrow \infty$


Wire Shape Optimization

Exponential Wire Shape!

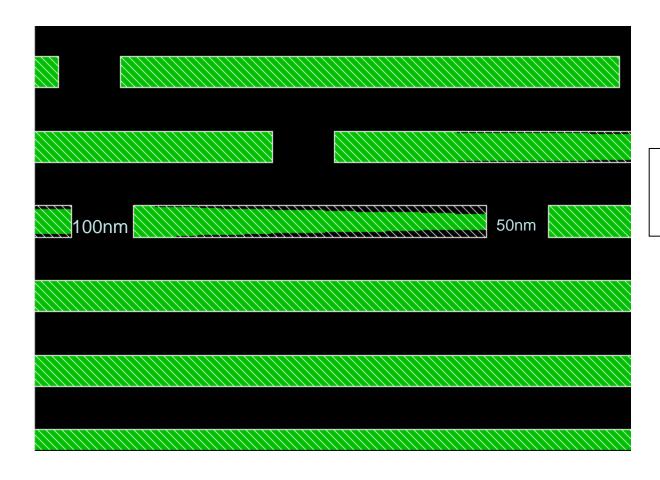
Wire Delay vs. Wire Shape

Wire Delay vs Wire Shape


100um length, 45nm technology Original: 100nm wire width

- HSPICE
- Constraints:
 - Small timing range
 - $-W_{max}$ and W_{min}
 - Exponential wire shape

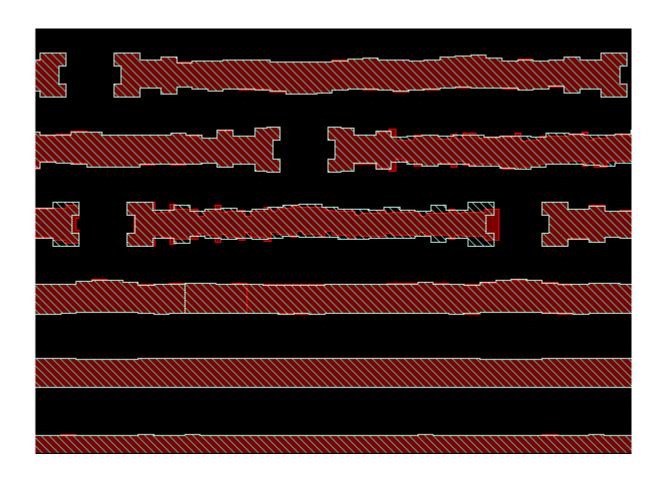
Optimal Wire Shape



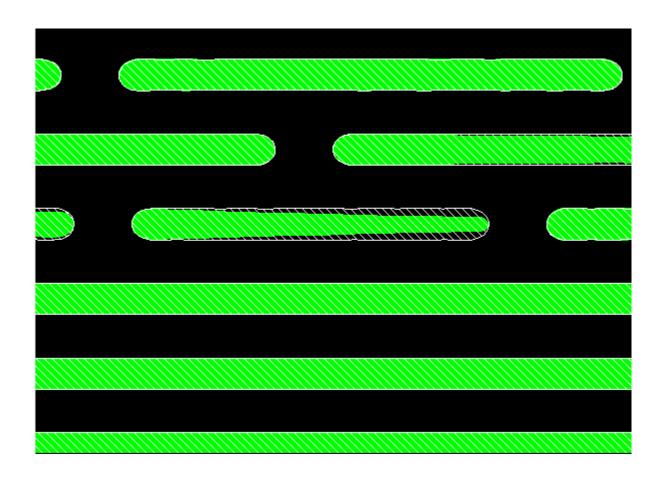
Obtain optimal wire shape from a set of wire shape candidates

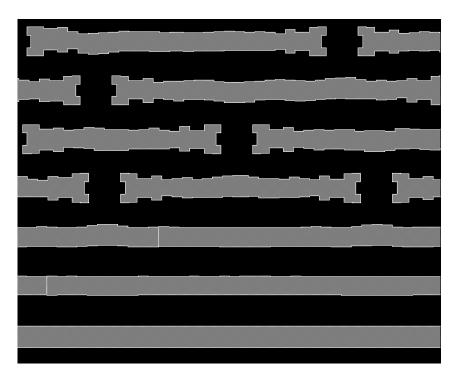
Exponential vs. Uniform (Ideal)

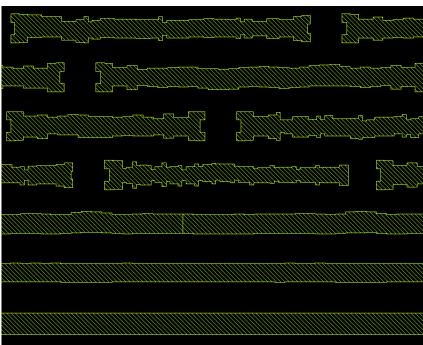
Pitch: 240nm


Max: 100nm

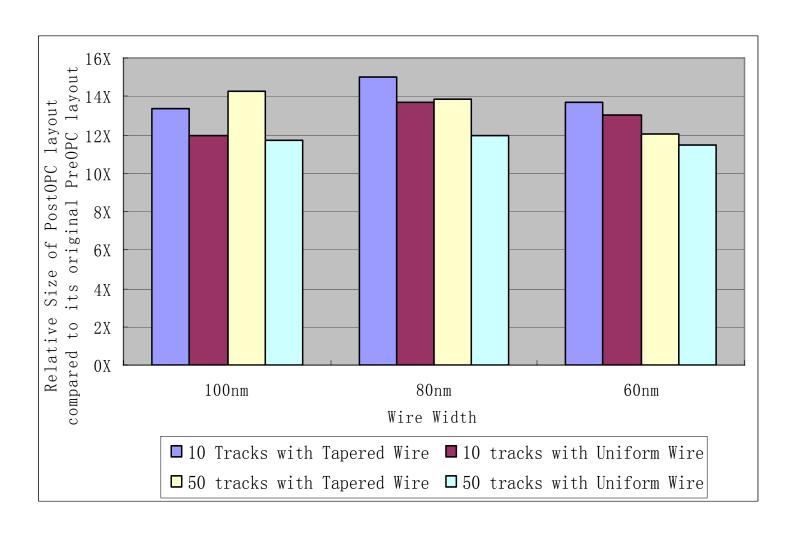
Min: 45nm


Exponential vs. Uniform (Mask)


Exponential vs. Uniform (Silicon)

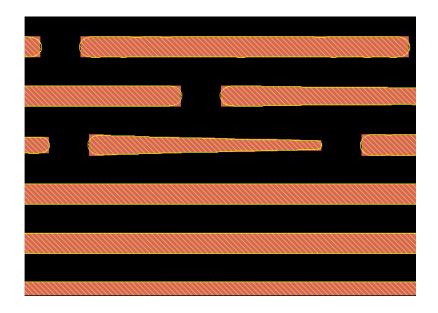


Similar Mask Complexity


uniform

exponential

Post-OPC GDSII Size Comparison



Accurate Fabrication of Exponential Wire

- Original wire width is 100nm and pitch is 240nm
- Extraction and timing simulation are based on post-OPC simulation
- Timing and area control is accurate

Wire Length (um)	Wsource (nm)	Wsink (nm)	Diff in Capacitance	Diff in Timing
50	65	52. 5	4.61%	-0.32%
75	60	50	2.97%	-0. 43%
100	65	50	5. 55%	-0.68%
250	70	47. 5	-0. 29%	-1.23%
500	75	47. 5	-3.54%	-1.22%
750	67.5	45	-3. 17%	-0. 44%
1000	67. 5	45	-3. 28%	-0. 43%

Intended wire shape vs. simulated wire shape

Results on Power Minimization

Wire Length (um)	Wsource (nm)	Wsink (nm)	Saving in Capacitance	Saving in Dynamic Power	Delay Variation
50	65	52. 5	38. 71%	17. 50%	1%
75	60	50	43. 47%	24. 04%	1%
100	65	50	39. 57%	24. 64%	2%
250	70	47.5	42.03%	33.83%	1%
500	75	47.5	41.79%	37. 28%	2%
750	67.5	45	46. 16%	42.71%	1%
1000	67.5	45	46. 22%	43. 58%	1%

Power Minimization v.s. Delay Minimization

Wire Shaping is more effective for power minimization

Power Minimization

Wire Length	W_{source}	W_{sink}	Decrease in	Saving in Dynamic	Delay Variation
(μm)	(nm)	(nm)	Capacitance	Power	
50	65	52.5	38.71%	17.50%	1%
75	60	50	43.47%	24.04%	1%
100	65	50	39.57%	24.64%	2%
250	70	47.5	42.03%	33.83%	1%
500	75	47.5	41.79%	37.28%	2%
750	67.5	45	46.16%	42.71%	1%
1000	67.5	45	46.22%	43.58%	1%

Delay Minimization

Wire Length	W_{source}	W_{sink}	Decrease in	Saving in Dynamic	Saving in Delay
(μm)	(nm)	(nm)	Capacitance	Power	
50	87.5	62.5	26.72%	12.08%	2.91%
75	87.5	62.5	26.79%	14.82%	5.15%
100	100	62.5	20.98%	13.06%	5.46%
250	125	50	20.18%	16.25%	5.61%
500	150	45	14.62%	13.04%	8.06%
750	150	45	14.65%	13.55%	11.93%
1000	150	45	14.72%	13.88%	12.42%

Conclusion

- Presented a wire shaping methodology with minimal design/manufacturing overhead
- Demonstrated accurate printing of exponential wire shape by litho simulations
- Obtained substantial reduction of power without affecting timing closure
- An excellent example of manufacturing-for-design
- Wire shaping is practical