Physical eptimization for
EFRGEAS USING POST:
pPlacement teprlIegy.
rewWwnting

Val Pevzner, Andrew Kennings, Andy Fox

Introduction (1)

m Traditional flow for backend of FPGA tools:

>

Many useful improvements made in each of these steps
to address objectives of timing, area, power, etc...

Typically understood, however, that:
e Placement and routing are bound by the output of technology

mapping; and
e Technology mapping is potentially forced to work with inaccurate

information with respect to delay.

March/April 2009 2

ISPD 2009
___|

Introduction (2)

m Interconnect delay increasingly important for FPGA
design and physical information is required!

m More typical/modern flow:

m Insertion of post-placement optimizations can
significantly improve the ability to optimize design
objectives.

m More accurate estimate of delay and likely interconnect is
available.

m Should exploit physical information AS WELL AS the
particular architecture imposed by the FPGA being
considered.

ISPD 2009 March/April 2009 3

Prior physical optimizations for,

FPGAS

m Different techniques proposed for FPGA post-placement
optimizations:

Logic duplication + empty resources [Schabas & Brown; 2003];

Logic duplication with feasible regions and monotonic paths +
incremental placement [Beraudo & Lillis, 2003];

Shannon decomposition + incremental placement [Singh & Brown,
2007];

Timing-driven functional decomposition + incremental placement
[Manohararajah, Singh & Brown, 2005];

Logic decomposition with choices and remapping + incremental
placement [Kim & Lillis, 2008].

m The different methods are all linked tightly with
Incremental placement (important) and rely on logic
duplication and/or decomposition strategies.

ISPD 2009

March/April 2009

4

ProASIC3 Architecture (1)

Device level architecture of the Actel ProASIC3 (+related

).

— CCC
— RAM Block

4,608-Bit Dual-Port
SRAM or FIFO Block

— 1/0s

0

— RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block
(A3P600 and A3P1000)

|
devices and families; Igloo, Nano, ..
" Bank 0 -
]Tﬂﬂl:lﬂﬂﬂl:lﬂﬂﬂﬂﬂﬂl:lﬂﬂﬂl:lﬂﬂﬂnﬂﬂﬂﬂﬂﬂﬂﬂﬂnﬂﬂﬂﬂﬂﬂnﬂﬂnﬂﬂ7].‘.
| | | e e | s | e | o [|
]| | || | | | | [
78 =F
- o
: s
7a a g
E | | | | s | o |
-] | | | | | | | o | =
A o,] [| [oo |3
Iiﬂﬂl:lﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂnﬂﬂﬂﬂﬂﬂﬂl:lﬂnl:lﬂﬂﬂl:lﬂnﬂl:lnﬂﬂl]
i Bank 2 *
Source: ProASIC3 Handbook 2/2009; Figure 1.2
ISPD 2009

March/April 2009

ProASIC3 Architecture (2)

m The VersaTile is capable of implementing both
combinational and sequential logic.

Need to exploit the feature of the architecture; namely
the fact we are working with LUT3

LUT-3 Equivalent D-Flip-Flop with Clear or Set Enable D-Flip-Flop with Clear or Set

X1— Data— —Y Data — —Y
X2—{ LUT-3}—Y CLK—1> D-FF CLK —> D-FF
X3 CLR— Enable —

ClR —

Source: ProASIC3 Handbook 2/2009; Figure 1.3

ISPD 2009

March/April 2009 6
|

This Paper

m Our proposal is a post-placement optimization based on
the concept of circuit rewriting with predefined circuit
topologies.

e Conceptually very simple; similar to those methods used for AIG
rewriting;
More powerful than pure logic duplication;

Abstracts out the requirements of any particular decomposition
technique;

e Tightly integrated with incremental placement to ensure accurate
timing information.
m Requires some off-line (a priori) processing to prepare the
circuit topologies.

m Ability to perform the off-line processing (as we shall see)
IS a consegquence of the FPGA architecture being
considered (LUT3)!

ISPD 2009 March/April 2009 7

Rewriting

m A cone of logic is selected and simulated. A comparison
IS made to a library of alternative circuit topologies
capable of implemented the function.

e If the alternative implementation improves the result, then the original
cone of logic is replaced or —rewritten — with the alternative
implementation.

e lIteratively applied either to all or a subset of nodes in a network, often
in forward or reverse topological order.

m For FPGA, typically applied prior to technology mapping
to optimize an AIG.

m Assuming that it is possible to compute an alternative set
of circuit topologies, the same concepts can be applied
to a LUT graph.

ISPD 2009 March/April 2009 8

Example of rewriting LUT,

b 11

138

d —8—] 186
e
el
g

7-input cone of logic;
cone consists of LUT?2
and LUT3

138

23

212

21

o ool og Th

7-input cone of logic
implementing the same
function.

The rewrite will improve area (less LUT) and may improve

timing (depending on placement, delays, etc.)

ISPD 2009

March/April 2009

9

Top-level algorithm

m Effectively the same as any rewriting algorithm with appropriate
modifications to account for selection of nodes to rewrite,
iIncremental placement and incremental timing analysis.

Procedure: Post-placement rewriting
Input/Output: A placed LUT netlist N
hegin
Identify a set § of timing critical nodes in N via timing analysis; «

Select timing critical nodes

for each node n € S do
M Find set of < k-input cones C of logic roored ar n
compute_conesic.k);
for each ¢ = C for node n do

Compute logic function f of ¢; <

& Compute set of alrernarives LUT ropologies M thar implement f

Consider different logic cones for each node

M = match_topology(f); >
for each m = M do
& Rewrite the k-input cone ¢ with topology m
rewrite_topology(c,m);
& Perform incremental placement and timing analysis
incremental_placement(c.m); <

Find alternative LUT topologies for cone

incremental_timing_analysis():
if (timing_improved) then
A Implementing | with m better than with c;
accept_topology(c,m);

Incremental placement and timing

ooto next_node; <
else
reject_topology (c,m);
end if
end do
end do
next_node:

L]
end do
end

ISPD 2009

Accept or reject current rewrite

March/April 2009 10

Matching cones to LUT topologies

m Given pre-encoded topologies of LUT, functions of logic
cones can be tested for feasibility very quickly using
encoding (NPN) and hash lookups.

Procedure: match_topology(c, [ib);

Input: k-input cut ¢ and encoded topology library lib.

Output: true (match) or false (no match), set of

matches and match details, M.

hegin
A derermine the function implemented by the cur _ _
f «+— simulate_cutic); < simulation
Adetermine the equivalence class for

g «+ npn_encode(f, ip_perm, ip_phase, op_phase); ¢ encoding
A determine if topologies implementing g exists.
bool rerval «— lib::matchig); < hash lookup
return rerval;

end

ISPD 2009 March/April 2009 11
___|

Topology Encoding (1)

m Must encode LUT topologies to facilitate fast matching.

e Matching logic functions to LUT topologies using SAT is great [Hu et
al., 2007], but time consuming.

m Can also consider using NPN encoding (a la cell libraries).

e For agiven set of LUT topologies, determine all functions that each
topology can implement;

e Encode functions using NPN to reduce storage and matching times.

e All this simulation and encoding is done a priori, off-line and
information is stored in data files.

m The ability to encoding and matching is a result of the
FPGA architecture under consideration!

» Topologies consisting of LUT with <= 3 inputs are realistic to encode
to a sufficient number of inputs (don’t implement too many different
functions!)

> E.g., quite practical to get up to (and including) 9-input functions which
proved to be sufficient.

ISPD 2009 March/April 2009 12
L ___|

Topology Encoding (2)

m Samples topologies for 7-input functions:

0 B—

0 B—
1 m—{ 3LUT |- i hadl m I
|2 B— L
3 |3t 6 = 3LUT —m O
14 B— 1 13 B— J
I5 @ ILUT —m OO 4 3—— JLUT
& @ 15 B—
(a) (b)

m Off-line, a priori simulation and encoding:

Can exploit symmetry to skip many of the
configuration bits (simulated functions lead

/ to the same equivalence class).

ISPD 2009 March/April 2009 13
e ___|

Incremental placement

m After each rewrite, we need to perform both incremental
placement and timing analysis.

e In FPGA, the incremental placement problem is very specific to the
FPGA architecture being considered.

m For ProASIC3, the incremental placement problem is
relatively simple due to the flat homogeneous
architecture of the device.

m Incremental placement method.:

e RIip-up the LUT in the cone being rewritten (creates gaps in
placement);

e Place LUT from alternative topology into their feasible regions for
monotonic paths;

e Perform rippling to remove any overlaps.

ISPD 2009 March/April 2009 14
L ___|

Numerical results (1)

m Algorithm implemented in C++ (within commercial tool
flow).

m Used a small number of LUTS3 topologies encoded off-line
suitable for matching logic cones with up to 7-inputs.

m Tested rewriting algorithm on a set of 136 industrial
design cases.

ISPD 2009 March/April 2009 15

Numerical results (2)

m Test#l: Percentage improvement in post-routed quality of
result (timing performance; improvement in post-routed

slack).
40.00%
35.00%
30.00%
25.00%
T— ~25 designs with
2 >5% improvement
o
E
22

15.00%
10.00% Due to *
* router

5.00%

U.OOCV |||||II|IIIIIIIIII|||||"""I““““I“““"

-5.00%

Design

m Average improvement of ~ 3.1% with max. improvement of
37.9% on top of existing physical optimization algorithms.

ISPD 2009 March/April 2009 16

Numerical results (3)

m Test#2: Impact on design area.

8.00%
6.00%
4.00%

2.00%

0.00% ““““IIII
-2.00%

-4.00%

% Increase

-6.00%
Design
s On average, negligible impact on circuit area; circuit area
IS not an issue anyway (designs all fit; no power impact).

ISPD 2009 March/April 2009 17

Numerical results (4)

m Test #3: Impact on run-time.
3

2.5

Runtime ratio
o

—

o
U

Design
m Average of 1.4X larger run-time on designs that took >2
minutes. Increase in run-time iIs more a consequence of
iIncremental placement and timing analysis; Not the
encoding/matching steps!

ISPD 2009 March/April 2009 18

Conclusions

m Presented a post-placement optimization
algorithm for FPGA that relies on conceptually
simple algorithm of circuit rewriting.

e Tightly integrated with incremental placement;
e Targeted to a commercial FPGA architecture (ProASIC3);

e Uses NPN encoding + matching to find alternative circuit
structures; possible because the architecture is composed on
LUTS.

m [ested on an industrial suite of test circuits.

e Yielded a small improvement of ~ 3.1% over all designs, but as
much as 37.9%.

e Minor increase in design area (expected);

e Increase in run-time (but due to the need for incremental
placement and incremental timing analysis).

ISPD 2009 March/April 2009 19

Questions?

ISPD 2009 March/April 2009 20

