
Physical optimization for
FPGAs using post-
placement topology
rewriting

Physical optimization for
FPGAs using post-
placement topology
rewriting
Val Pevzner, Andrew Kennings, Andy Fox

2March/April 2009ISPD 2009

Introduction (1)Introduction (1)

Traditional flow for backend of FPGA tools:

Many useful improvements made in each of these steps
to address objectives of timing, area, power, etc…
Typically understood, however, that:

Placement and routing are bound by the output of technology
mapping; and
Technology mapping is potentially forced to work with inaccurate
information with respect to delay.

3March/April 2009ISPD 2009

Introduction (2)Introduction (2)

Interconnect delay increasingly important for FPGA
design and physical information is required!
More typical/modern flow:

Insertion of post-placement optimizations can
significantly improve the ability to optimize design
objectives.
More accurate estimate of delay and likely interconnect is
available.
Should exploit physical information AS WELL AS the
particular architecture imposed by the FPGA being
considered.

4March/April 2009ISPD 2009

Prior physical optimizations for
FPGAs
Prior physical optimizations for
FPGAs

Different techniques proposed for FPGA post-placement
optimizations:

Logic duplication + empty resources [Schabas & Brown; 2003];
Logic duplication with feasible regions and monotonic paths +
incremental placement [Beraudo & Lillis, 2003];
Shannon decomposition + incremental placement [Singh & Brown,
2007];
Timing-driven functional decomposition + incremental placement
[Manohararajah, Singh & Brown, 2005];
Logic decomposition with choices and remapping + incremental
placement [Kim & Lillis, 2008].

The different methods are all linked tightly with
incremental placement (important) and rely on logic
duplication and/or decomposition strategies.

5March/April 2009ISPD 2009

ProASIC3 Architecture (1)ProASIC3 Architecture (1)

Device level architecture of the Actel ProASIC3 (+related
devices and families; Igloo, Nano, …).

Source: ProASIC3 Handbook 2/2009; Figure 1.2

6March/April 2009ISPD 2009

ProASIC3 Architecture (2)ProASIC3 Architecture (2)

The VersaTile is capable of implementing both
combinational and sequential logic.
Need to exploit the feature of the architecture; namely
the fact we are working with LUT3

Source: ProASIC3 Handbook 2/2009; Figure 1.3

7March/April 2009ISPD 2009

This PaperThis Paper

Our proposal is a post-placement optimization based on
the concept of circuit rewriting with predefined circuit
topologies.

Conceptually very simple; similar to those methods used for AIG
rewriting;
More powerful than pure logic duplication;
Abstracts out the requirements of any particular decomposition
technique;
Tightly integrated with incremental placement to ensure accurate
timing information.

Requires some off-line (a priori) processing to prepare the
circuit topologies.
Ability to perform the off-line processing (as we shall see)
is a consequence of the FPGA architecture being
considered (LUT3)!

8March/April 2009ISPD 2009

RewritingRewriting

A cone of logic is selected and simulated. A comparison
is made to a library of alternative circuit topologies
capable of implemented the function.

If the alternative implementation improves the result, then the original
cone of logic is replaced or – rewritten – with the alternative
implementation.
Iteratively applied either to all or a subset of nodes in a network, often
in forward or reverse topological order.

For FPGA, typically applied prior to technology mapping
to optimize an AIG.

Assuming that it is possible to compute an alternative set
of circuit topologies, the same concepts can be applied
to a LUT graph.

9March/April 2009ISPD 2009

Example of rewriting LUTExample of rewriting LUT

The rewrite will improve area (less LUT) and may improve
timing (depending on placement, delays, etc.)

7-input cone of logic;
cone consists of LUT2

and LUT3

7-input cone of logic
implementing the same

function.

10March/April 2009ISPD 2009

Top-level algorithmTop-level algorithm

Effectively the same as any rewriting algorithm with appropriate
modifications to account for selection of nodes to rewrite,
incremental placement and incremental timing analysis.

Select timing critical nodes

Consider different logic cones for each node

Find alternative LUT topologies for cone

Incremental placement and timing

Accept or reject current rewrite

11March/April 2009ISPD 2009

Matching cones to LUT topologiesMatching cones to LUT topologies

Given pre-encoded topologies of LUT, functions of logic
cones can be tested for feasibility very quickly using
encoding (NPN) and hash lookups.

simulation

encoding

hash lookup

12March/April 2009ISPD 2009

Topology Encoding (1)Topology Encoding (1)

Must encode LUT topologies to facilitate fast matching.
Matching logic functions to LUT topologies using SAT is great [Hu et
al., 2007], but time consuming.

Can also consider using NPN encoding (a la cell libraries).
For a given set of LUT topologies, determine all functions that each
topology can implement;
Encode functions using NPN to reduce storage and matching times.
All this simulation and encoding is done a priori, off-line and
information is stored in data files.

The ability to encoding and matching is a result of the
FPGA architecture under consideration!

Topologies consisting of LUT with <= 3 inputs are realistic to encode
to a sufficient number of inputs (don’t implement too many different
functions!)
E.g., quite practical to get up to (and including) 9-input functions which
proved to be sufficient.

13March/April 2009ISPD 2009

Topology Encoding (2)Topology Encoding (2)

Samples topologies for 7-input functions:

Can exploit symmetry to skip many of the
configuration bits (simulated functions lead
to the same equivalence class).

Off-line, a priori simulation and encoding:

14March/April 2009ISPD 2009

Incremental placementIncremental placement

After each rewrite, we need to perform both incremental
placement and timing analysis.

In FPGA, the incremental placement problem is very specific to the
FPGA architecture being considered.

For ProASIC3, the incremental placement problem is
relatively simple due to the flat homogeneous
architecture of the device.

Incremental placement method:
Rip-up the LUT in the cone being rewritten (creates gaps in
placement);
Place LUT from alternative topology into their feasible regions for
monotonic paths;
Perform rippling to remove any overlaps.

15March/April 2009ISPD 2009

Numerical results (1)Numerical results (1)

Algorithm implemented in C++ (within commercial tool
flow).

Used a small number of LUT3 topologies encoded off-line
suitable for matching logic cones with up to 7-inputs.

Tested rewriting algorithm on a set of 136 industrial
design cases.

16March/April 2009ISPD 2009

Numerical results (2)Numerical results (2)

Test#1: Percentage improvement in post-routed quality of
result (timing performance; improvement in post-routed
slack).

Average improvement of ~ 3.1% with max. improvement of
37.9% on top of existing physical optimization algorithms.

Due to
router

~25 designs with
>5% improvement

17March/April 2009ISPD 2009

Numerical results (3)Numerical results (3)

Test#2: Impact on design area.

On average, negligible impact on circuit area; circuit area
is not an issue anyway (designs all fit; no power impact).

18March/April 2009ISPD 2009

Numerical results (4)Numerical results (4)

Test #3: Impact on run-time.

Average of 1.4X larger run-time on designs that took >2
minutes. Increase in run-time is more a consequence of
incremental placement and timing analysis; Not the
encoding/matching steps!

19March/April 2009ISPD 2009

ConclusionsConclusions

Presented a post-placement optimization
algorithm for FPGA that relies on conceptually
simple algorithm of circuit rewriting.

Tightly integrated with incremental placement;
Targeted to a commercial FPGA architecture (ProASIC3);
Uses NPN encoding + matching to find alternative circuit
structures; possible because the architecture is composed on
LUT3.

Tested on an industrial suite of test circuits.
Yielded a small improvement of ~ 3.1% over all designs, but as
much as 37.9%.
Minor increase in design area (expected);
Increase in run-time (but due to the need for incremental
placement and incremental timing analysis).

20March/April 2009ISPD 2009

Questions?Questions?

