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Secondary Constraints 

Primary Constraints 

The Verification Gap 
Constraint Classification 

 Technology Constraints (manufacturing) 
  min. wire width, spacing, overlap 

 Functional Constraints (circuit function) 
  max. IR-drop between two net terminals, device matching, ... 

 Design-Methodical Constraints (design complexity) 
  Design hierarchy, routing directions, standard cells 

 Economic Constraints (cost, TTM) 
  Chip count, development costs and chip area determine IC technology 
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The Verification Gap 
Manufacturability 

Layout  Rules  2 

EDA-tools guarantee manufacturability! 

DRC Technology Constraints  1 
(Meta layer) 

Dummy errors 
Verification gap 
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The Verification Gap 
Functionality 

Schematic  2 

EDA-tools do not (yet) guarantee circuit functionality ! 

LVS Functional Constraints  1 
(Meta layer) (Expert knowledge) 

Unrepresentable 
expert knowledge 

Representable, but  
non-verifiable knowledge 

(schematic prosa, 
symmetries, …) 

Devices, 
parameters, 

nets 
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Current Approaches for Constraint Consideration 
Constraint-Consideration during Schematic Design 

+ 
– No autom. constraint verification possible 

Man. consideration of “complex” constraints 

Constraints as Schematic „Prosa“ 

+ 
–  No “complex” constraints (yet) 

Constraints are part of the database 

2nd Gen. Constraint Management  
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Current Approaches for Constraint Consideration 
Constraint-Consideration during Physical Design  
„Atomic“ Module Approach 

Design Algorithms 

Layout variant 1 Layout variant 2 

  Individual design objects (→ transistors, 
resistors, capacitors, etc.) and constraints  
are considered (semi-) automatically  

  Constraint assignment and management is 
required  

  Design algorithms must “understand” all 
constraints 

Characteristics: 

+ Full flexibility for layout optimization 
– Missing constraints result in wrong layouts 
– Long run-times of layout generation tools 



„Constraint-driven Design - The Next Step Towards Analog Design Automation“, ISPD’09, 2009/03/31 12 

Current Approaches for Constraint Consideration 
Constraint-Consideration during Physical Design  
„Molecular“ Module Approach 

PCell Module 1 PCell Module 2 

  Several design objects are combined to  
a hierarchical PCell module  

  Constraints will be fulfilled automatically  
by the PCell module 

  High-level re-use of design knowledge 

Characteristics: 

– Limited freedom for design optimization 

– Additional constraints require new PCell module 

+ Manual consideration of any constraint 

– Complexity of rel. PCell verification problem: O(mn) 
(m - number of parameters, n - number of variants per parameter) 

+ Very fast constraint-driven layout generation 
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The Constraint-driven Design Flow 
Constraint Representation 

  Formalize constraints!  

  Define all constraints 
explicitly! 

  Account for design 
style! 
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T1 

T3 

T2 
Pad 

R(Pad->T1) < 1Ω? 

R(Pad->T3) < 1Ω? 
R(Pad->T2) < 1Ω? 

Simple and Complex Constraints 

The Constraint-driven Design Flow 

Simple constraint examples:  
 VIR(Pad->T2) < 0.1 V 
 Voltage class (Pad) = {50V, 80V} 
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T1 

T3 

T2 
Pad 

R(Pad->T1) < 1Ω? 

R(Pad->T3) < 1Ω? 

Complex constraint example (independent constraints):  
  if ( net type == P&G ) then  

   [[Pad->T1], [Pad->T2], [Pad->T3]] must have star-shaped net topology && 
  R(Pad->T1) < 1Ω && R(Pad->T2) < 1Ω && R(Pad->T3) < 1Ω ! 

R(Pad->T2) < 1Ω? 

Simple and Complex Constraints 

The Constraint-driven Design Flow 
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Constraint Management (Data Consistency) 

DO2 

DO1 
C1 

DOx  - Design Object 

Cy    - Constraint 

Today:  Separate design and  
 constraint databases 

Design and  
Constraint Database 

DO2 

DO1 

C1 

V1.0 

DO2 

DO1 

C1 

V2.0 

DO3 Future 

Design  
Data 

Constraint  
Data 

– Difficult design and constraint data management 
(data consistency, data versioning)  

The Constraint-driven Design Flow 
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Constraint Management (Propagation) 

I1 
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I2 
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T 

Examples: 
- Floorplanning constraints 
- IR-drop constraints  

Top-Down Propagation 

C1 

Top-Down and 
Bottom-Up Propagation 

Examples: 
- ESD path definition   
- Net shielding 

I1 

I12 I11 

I221 

I22 

I2 

I222 I223 

I21 

T C3 

Bottom-Up Propagation 

Examples: 
- Placement constraints 
- Routing blockages   

I1 
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I2 
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T 

C2 

The Constraint-driven Design Flow 
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Constraint Derivation Methods 

DOx  - Design Object 

Cy    - Constraint 

DO2 

DO1 

C1 

? 

? 

  Direct derivation rules and templates 
  Example: 

 if ( differential pair ) then  
    Assign matching constraint to transistor pair 

  Deduction processes 
  Example: 

 Net N1 is connected to 40V IO pad &&  
 I1 is connected to net N1  
 ⇒ I1 is connected to 40V IO pad  
 → Assign 40V design constraints to I1  

  Indirect method (transformation) 

  Expert knowledge 

The Constraint-driven Design Flow 
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Constraint Transformation 

Definition: Consistent and unambiguous transformation of  
         high-level constraints into low-level constraints 

Example: IR-Drop 

1.  Transformation of electrical constraints 
 into circuit-specific constraints 

Max. IR-Drop [V] 

2.  Transformation of circuit-specific constraints 
 into layout-specific constraints Max. Resistance [Ohm] 

3.  Assignment of layout-specific constraints 
 to (geometrical) design parameters 

Wire length, -width 
layer … 

The Constraint-driven Design Flow 
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Constraint Sensitivity Analysis (CSA) 

Definition: Context-dependent sensitivity and gap determination of design  
    parameters under consideration of one or more constraints 

The Constraint-driven Design Flow 
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Constraint Sensitivity Analysis (CSA) 

The Constraint-driven Design Flow 

VIR 

w 

ΔT = T1 = const. 

ΔT < T1 = const. 

ΔT > T1 = const. 

VIR-max 
Sensitivity of w with respect to VIR 

Sensitivity of w and ΔT with respect to VIR  

Possible constraint violation ! 

w1 w2 w3 
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1. Constraints are not formalized 

The voltage class of each well 
connected to a supply line should match  

the voltage range occurring at  
the pad during operation! 

Constraint Verification 

4. Verify constraint fulfillment  
-  Manual (4+n eyes verification) 
-  Automatical verification 

 2 CV 

2. Formalize constraints and  
verification task 

For all power and ground pads: 
     Get voltage class VPAD of pad 

     For all net terminals of the active net: 
           Get voltage class VInst of owning instance 

 If VInst ≠ VPAD then Return ERROR 
Return SUCCESS  

Constraints 

3.2 Specify and implement  
verification routine(s)  

3.1 Define verification  
requirements  

Verification Rules  1 

The Constraint-driven Design Flow 
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Constraint Verification (Example) 

ESD-Verification 

Netlist Layout 

Circuit  
Verification 

DRC / 
LVS  

Symmetry 
Verification 

IR-drop 
Verification 

Reliability 
Verification 

Property  
Verification … … 

Circuit simulation 

Sub-circuit recognition Layout polygon extraction 

Terminal current retrieval Resistance calculation 

EOS reliability calculation 

Instance property retrieval Layout topology recognition 

1 

2 

3 

4 

5 

6 

7 

8 

The Constraint-driven Design Flow 

Combine capabilities of several tools to define  
and perform verification tasks ! 

1 2 3 1 4 5 1 1 4 7 8 5 4 6 8 5 4 3 
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 Functionality: 

Tool A 

A1 A2 A3 An … 

 Functionality: 

Tool B 

B1 B2 B3 Bm … 

CLP-based 
Logic Core & 

Constraint  
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TIKB 
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CLP – Constraint Logic Programming 
TIK  – Tool Integration Kit    

Constraint data 
Design data 
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Constraint 
Rule 
File 

  Example: 
Check all pin-to-pin resistances RC,Pn in star-shaped nets: RC,Pn ≤ Rmax ! 

 CES query for Rmax = 5 Ω:  valStarRes(N, P, 5). 

 Result: List of all violating combinations of nets and terminals 

Resistance-Extraction 
TIK 

Topology- 
Extraction 

TIK 

Constraint 

Layout-Extraction 
TIK 

valStarRes(NetID, PinID, Rmax) :- 
  R>Rmax, net(_, NetID), netLayout(NetID, L), 
  topologyClass(_, L, star(C)), 
  netPin(NetID, PinID), coordinate(PinID, P), 
  resistance(_, L, C, P, R). 

Constraint Verification 

The Constraint-driven Design Flow 
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Impact on Design Algorithms and Design Flow 
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High-Level Design Algorithms 

Impact on Design Algorithms and Design Flow 

Design Problem 

Algorithm 2 Algorithm 3 Algorithm 1 Algorithm n … 
IFC IFC IFC IFC 

High-Level  
Design Algorithm 

Design and  
Constraint Database 

Strategy A: 
1. Placement  Alg.1 
2. Glob. Routing  Alg.2 
3. Det. Routing  Alg.6 

Strategy B: 
1. Route Planning  Alg.4 
2. Placement  Alg.9  
3. Det. Routing  Alg.6 
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Open Problems (Long Term) 

  Constraint solver: 
  Consideration of constraints with statistical boundaries is required  

  Constraint methods: 
  Scalability of constraint sensitivity analysis (CSA) must be improved 
  Approaches for automatic constraint rule optimization should be developed 

  High-level design algorithms: 
  Improvement of concepts for abstraction of design and verification algorithms 
  Development of strategies for high-level design task partitioning (with CSA) 
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Summary and Conclusion 

  Presentation covered (1) today’s verification gap, (2) current and future 
approaches for constraint-driven design and (3) open problems 

  Constraint-driven design is a major and a necessary step towards a  
fully-automated analog design synthesis 

  Constraint verification reduces the existing verification gap in A/MS 
designs 

  The comprehensive and automatic constraint consideration is a 
potentially disruptive technology with a very strong impact on the  
design process!  

  Constraint-driven X-design  interdisciplinary field with a tremendous  
potential and many challenging problems 
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Thank You! 
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