On Improving Optimization Effectiveness in Interconnect-driven Physical Synthesis

Prashant Saxena
Vishal Khandelwal
Changge Qiao
Pei-Hsin Ho
J.-C. Lin
Mahesh lyer

March 29, 2009

ACM International Symposium on Physical Design Synopsys®

San Diego, CA

Predictable Success

Overview

- Evolution of physical synthesis net models
 - Net delay prediction during pre-route optimization
- Guaranteed routes for predictable delays
 - Persistence: pros and cons
 - Focus on system architecture and flow, rather than on implementation details
- Experimental Validation

Optimization Effectiveness

- Uncertainty due to :
 - Subsequent design transforms
 - Estimated routes and parasitics
 - Process variation
- Bad estimates can mislead optimization trajectory
- Pre-route vs. post-route optimization
 - Tradeoff between data accuracy and flexibility

The Evolution of Net Models - I

- Poor wire scaling → better net delay prediction needed
- Fanout-based wireload models from logic synthesis
 - Statistical, ignores actual wirelength
- Placement-based HRPM models
 - Underestimates wirelength for multi-pin nets
 - Best possible length even for 2,3-pin nets
- Empirical fanout compensation factors (eg RISA)
 - Inaccurate source-to-sink estimates

The Evolution of Net Models - II

- Rectilinear Spanning/Steiner trees
 - Simple greedy schemes
 - Modeling of blockages
 - Timing-driven trees
 - Layer assignment
 - Congestion-aware topologies
 - Variable accuracy
 - Increase sophistication as design converges
- Use the global router for virtual routes
 - ...rather than merely using background congestion map
 - Same engine for estimation and actual routing

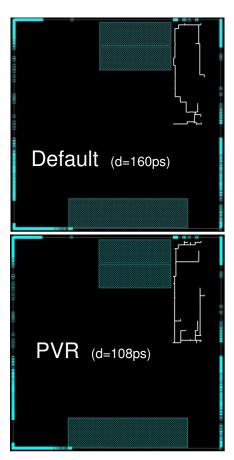
So What's the Problem?

- Routers are unstable
 - Small congestion map error can change a route significantly
 - Ditto for timing
 - Additional ripup-and-reroute iterations can also change routes
 - Netlist evolves during estimation and actual routing
- Runtime overhead
- Estimation will always have the instability problem

Guaranteeing the Routes

- Fix the topology, layer assignment, and detours
 - Accurate net delays and parasitics
 - Custom designers often "preroute" some nets by hand
- If it's so obvious, why don't we always do it?
 - Netlist is still evolving during pre-route estimations
 - Frozen nets inhibit optimization
 - Routability impact
 - Restricts flexibility of ripup-and-reroute
- Persistence:
 - Select and route a small number of carefully chosen nets
 - Update nets/routes as needed during subsequent optimization

Net Selection - I

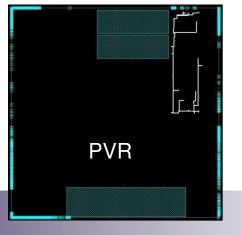

- Only a few nets are critical and unpredictable
 - Very critical nets: usually not unpredictable
 - Get preferential resource access from timing-driven router
 - Side-loads isolated as expected
 - Non-critical nets: Unpredictability doesn't matter
 - Small nets: Net delay is insignificant
- Focus on the "almost-critical" nets
 - Delay estimator doesn't identify them as critical (ideal routing assumed)
 - So, they are left unoptimized
 - If routed badly, expensive post-routing fixes are needed
- High fanout nets: increased unpredictability due to topology choices

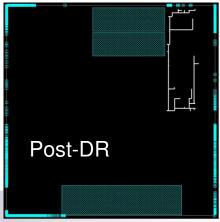
Net Selection - II

- Empirically profiled unpredictable nets in several realworld designs
 - Correlated pre-routing vs. post-routing delay discrepancy with parameters like fanout, delay, criticality, wirelength etc.
 - Net sensitivity: Normalized net length increase before timing or electrical DRC violation occurs
- Net selection engine
 - First filter out nets with one or more of:
 - Small physical span
 - Large timing slack
 - Low sensitivity and single sink
 - Heuristically cost the remaining nets
 - Cost function based on parameters that correlate strongly with unpredictability

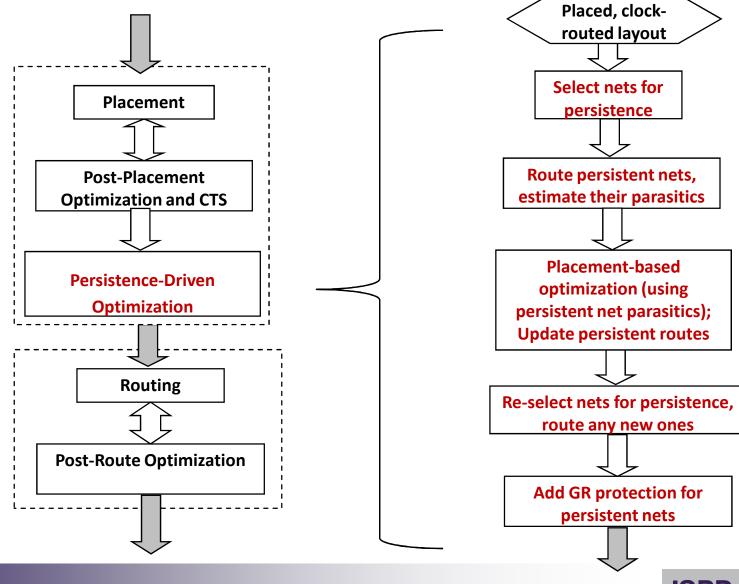
Routing the Selected Nets

- Use high-quality interconnect synthesis
 - Few enough nets that runtime impact is limited
 - Proportional to number of selected nets
 - Must be congestion-aware
 - Leave enough tracks for remaining nets
- Alternatively, extract routes from a global routing pass
 - Individual routes may not be as great
 - Runtime overhead independent of number of selected nets
- Good route quality desirable, but improved predictability can make up for degraded quality



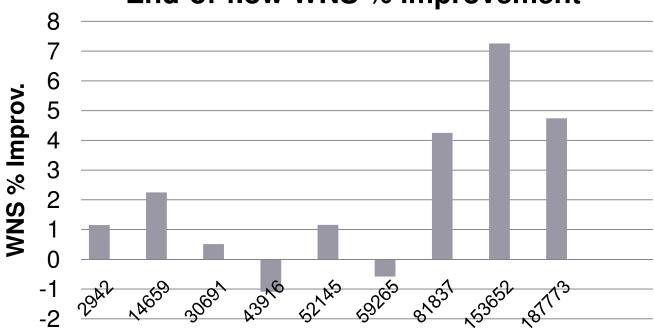

Interconnect-aware Optimization

- Use actual, route-based parasitics for persistent nets
- Don't "freeze" a net's routing (as with preroutes)
 - Else, optimization is restricted
- Some transforms require ECO route updates
 - Sizing
 - Buffering: derive routes of newly-created nets from original persistent route
- A few (e.g., remapping) may invalidate routes
 - Revert to default virtual router
- Synthesis changes set of nets desired for persistence
 - In practice, large fraction (>70%) of nets survives


Controlling the Router

- Preserve persistent routes in first GR pass
 - Translate from lightweight pre-route representation to actual global routes
 - Timing-driven GR for remaining nets
 - Protecting >4-5% of nets starts impacting routability
- No protection during TA, DR, or subsequent optimization/ECO-routing
 - "Soft" constraints that can be overridden
 - Unusual to find persistent routes changing significantly

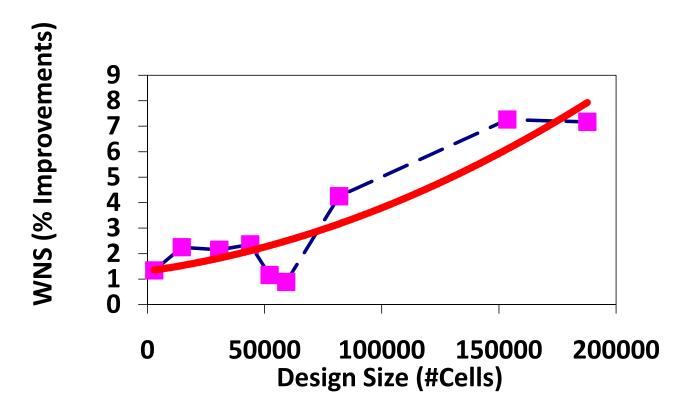
Persistence-based Flow


ISPD '09

Validating the Automated Flow

- Implemented in industrial physical synthesis flow
- Tested on 65nm real-world benchmarks
- Results reported at end of post-routing optimization
 - To investigate whether QoR benefits percolate to end-of-flow
- Apples-to-apples: control flow gets extra optimization pass
- Route persistent nets using global router
 - Avoids contamination of results due to improved interconnect synthesis
- WNS change normalized to clock periods

Automated Flow: Experimental Data


Design Size

- Avg. WNS Improvement: 2.19%
- Avg. CPU Overhead: 3.4%
- No discernible routability impact (Post-DR DRViolations)

Maximizing QoR

- High end designs: often rerun with multiple settings to maximize QoR
- To model this niche, we tried limited design-specific parameter tuning
- Tried four versions of our flow
 - %age of selected nets: 2% or 3%
 - Cost function for net selection: two variants

Maximizing QoR: Experimental Data

Avg. WNS Improvement: 3.21%

Concluding Remarks

- Proposed persistence as a way to make pre-route optimization more effective
- Discussed how to address its biggest risk (viz., routability impact)
 - Smart selection of a small number of key nets is crucial
- Implemented in a leading real-world physical synthesis system
 - Significant QoR benefits that percolate to final handoff
 - Benefits scale well with design size
- Natural next step in evolution of net models for physical synthesis