
Fast Buffering for Optimizing Worst Slack and
Resource Consumption in Repeater Trees

Christoph Bartoschek, Stephan Held, Dieter Rautenbach,
Jens Vygen

Research Institute for Discrete Mathematics
University of Bonn

March 30, 2009

Outline

I Problem Description
I Preparation
I Buffering Algorithm
I Results

The Repeater Tree Problem

A repeater tree instance consists of
I a root r with position Pl(r) and

estimated arrival time ATr

I a set S of sinks and for each
sink s its polarity + or −, the
location Pl(s) the input
capacitance icap(s) and
estimated RATs

I a library L of repeaters and for
each repeater t the timing rules
and input capacitance icap(t)

I physical information

r

+

−

−

The Repeater Tree Problem

A repeater tree instance consists of
I a root r with position Pl(r) and

estimated arrival time ATr
I a set S of sinks and for each

sink s its polarity + or −, the
location Pl(s) the input
capacitance icap(s) and
estimated RATs

I a library L of repeaters and for
each repeater t the timing rules
and input capacitance icap(t)

I physical information

r

+

−

−

The Repeater Tree Problem

A repeater tree instance consists of
I a root r with position Pl(r) and

estimated arrival time ATr
I a set S of sinks and for each

sink s its polarity + or −, the
location Pl(s) the input
capacitance icap(s) and
estimated RATs

I a library L of repeaters and for
each repeater t the timing rules
and input capacitance icap(t)

I physical information

r

+

−

−

The Repeater Tree Problem

A feasible repeater tree
I connects the root to the sinks using wires and placed

repeaters from the library such that
I the signal arrives at the sinks with correct parity and
I capacitance and slew limits are obeyed

Objectives
I maximinze the worst slack
I reduce power consumption

Topology Generation and Buffering

A common simplification of the problem is to divide the problem
into two steps:

I topology generation
I buffering along a given topology

In this talk we only consider buffering and therefore the topology is
part of the input

Previous Work
An overview of buffering algorithms can be found in the Handbook
of Algorithms for Physical Design Automation [AMS08].

The Repeater Tree Problem

A repeater tree instance consists of
I a root r with position Pl(r) and

estimated arrival time ATr
I a set S of sinks and for each

sink s its polarity + or −, the
location Pl(s) the input
capacitance icap(s) and
estimated RATs

I a library L of repeaters and for
each repeater t the timing rules
and input capacitance icap(t)

I physical information

I a topology

r

+

−

−

The Repeater Tree Problem

A repeater tree instance consists of
I a root r with position Pl(r) and

estimated arrival time ATr
I a set S of sinks and for each

sink s its polarity + or −, the
location Pl(s) the input
capacitance icap(s) and
estimated RATs

I a library L of repeaters and for
each repeater t the timing rules
and input capacitance icap(t)

I physical information
I a topology

r

+

−

−

Preparation – Topologies

A topology T is a directed tree rooted at r with δ+(r) = 1 and
δ+(u) ∈ {1, 2} for all internal nodes u.

The set of leaves is a subset of S.

Pl(u) gives the position of each internal node u.

Preparation – Sources of Topologies

Topologies can be generated by several algorithms. (See also
[AMS08])

I Fast Topology Generation [BHRV06]
I C-Tree [AHHKLLQSS02]
I Global Routing

Preparation – Delay Model

The algorithm depends on a delay model that is able to calculate
slacks for a given topology.

Used Delay Model [BHRV06]
The delay from r to a sink s in a given topology is modeled as:

AT (s) =ATr + rootdelay + sinkdelay(s)+∑
(u,v)∈E(T[r,s])

dnode + dwire · dist(Pl(u),Pl(v))

I dnode : Delay penalty for bifurcation
I dwire : Delay per unit length

Other delay models:
BELT [AHSS04]

Preparation – Slew Degradation Factor ν

The required arrival time at a sink depends on the slew that arrives
at the sink.
We approximate this function linearly:

RATs(slew) = RATs + ν(slew − target_slew) (1)

Preparation – Repeater Selection by inv(load, slew)

The function inv gives us the smallest inverter that can drive the
given load and achieves the given slew if a target_slew arrives at
its input pin.

Algorithm – Basic Properties

The basic properties of the algorithm are:
I It works bottom-up.
I It is driven by capacitance limits.
I It changes the topology.

Algorithm

1. While there is a leaf in the topology:
1.1 Choose a leaf x
1.2 If Pl(x) = Pl(parent(x)) then Merge(x)
1.3 else Move(x)
1.4 Update slacks in the tree

Algorithm – Limits

According to the parameter ξ the following limits are choosen:
I A load limit for any driver maxcap
I A wire load limit for any net maxwcap
I A slew target

Algorithm – Clusters

Each node of the topology is associated with a pair of clusters (one
for each parity).

Cluster
A cluster C is a triple (S(C),W (C),M(C)) where

I S(C) is a set of sinks/repeaters below the cluster.
I W (C) is a capacitance estimate for the wires between the

cluster and its sinks.
I M(C) ∈ R2 is the merge point of the cluster.

Additional properties
I Pl(C) is the position of the cluster.
I Cap(C) is the total capacitance behind the cluster.

Cap(C) = W (C) +
∑

s∈S(C)

icap(s) (2)

Algorithm – Cluster Example

−
z

++

a

+

−

+

d

−
c

x y

Algorithm – Invariant of the Tree

R

+

−

−−
+

−
+

−
+

Algorithm – Timing in the Tree

Timing in the three parts of the tree is computed.
I For the realized subtrees we have a RAT for the slew_target.
I For the topology we use the delay model.
I A RAT can be computed for the clusters by using the

topology information.

Algorithm – Moving Clusters

The Move operation moves a pair of clusters towards their parent
as far as the capacitance limits allow. If the move does not reach
the parent then a repeater is inserted by using inv.

Algorithm – Merging Clusters

The Merge operation merges a cluster pair of a node with the
clusters of the parent node.

One of the following options is choosen:
I Merging without adding a repeater
I Inserting a repeater in front of one of the clusters

Algorithm – Inserting a Repeater during Merging

Repeaters are inserted in front of the sinks of a cluster at the
merge point of the cluster or at its position.
The new repeater is added as a sink into a given cluster.

+

+

−

−
Prototype inverter

?

Algorithm – Merge Evaluation

Each feasible option gives a slack and a power value.
I The slack can be computed by the RATs of the clusters and

the delay in the delay model.
I We use the slack at the root node for evaluation.
I The power value are the costs associated with a repeater.

We choose the candidate that maximizes:

ξslack − (1− ξ)power (3)

Running Time

The running time of the algorithm is in O(|S||L|+ k log |L|) where
k ∈ O(l

l∗) and l∗ is the length of a wire with capacitance
maxwcap.

Example – Step 1

R

4

1

1

+

−

−

Figure: The input topology

Example – Step 2

R

4

1

1

+

−

−−D
+

−E
+

−A
4

1
B

+

1
C

+

4

5

2
3

6

Figure: The preliminary topology after initializing the cluster pairs.
Dashed lines indicate which sinks belong to a cluster

Example – Step 3

R

4

1

1

+

−

−

maxcap: 8
maxwcap: 6

−D
+

−E
+

−A
8

1
B

+

1
C

+

4

5

2
32

4

Figure: The preliminary topology after moving A along (E ,A)

Example – Step 4

R

4

1

1

+

−

−

inverter
input capacitance: 1

−D
+

− E
+

1
A

+
1

B
+

1
C

+

4

5

2
32

Figure: Creating the first inverter and updating the clusters

Example – Step 5

R

4

1

1

+

−

−−D
+

3
E

+
1

B
+

1
C

+

4

5

2
3

2

Figure: Moving A and merging A with E

Example – Step 6

R

4

1

1

+

−

−−D
+

7
E

+

1
C

+

4

5

2

2 3

Figure: Moving B and merging B with E

Example – Step 7

R

4

1

1

+

−

−−D
+
−E
1

1
C

+

4

5
1

Figure: Moving E and creating the second inverter

Example – Step 8

R

4

1

1

+

−

−−D
2

1
C

+

4

5

1

Figure: Moving E further and merging E and D

Example – Step 9

R

4

1

1

+

−

−6
D

2

4

1

6

Figure: Moving C and merging C and D

Example – Step 10

maxwcap: 6

R

4

1

1
mergepoint

+

−

−

7
D

3

3

2 6

Figure: Moving D one unit along (R,D)

Example – Step 11

root maxocap: 8

R

4

1

1

+

−

−

−D
4

3

2

Figure: Creation of the third inverter and updating the clusters

Example – Step 12

R

4

1

1

+

−

−

Figure: The final repeater tree

Experimental Results

I 2.1 million instances were taken a current 65 nm design and a
45 nm design.

I All experiments were done on Intel Xeon E7220 processors
with 2.93GHz.

Results - Instances

Results - Used Repeaters

Results - Slack Deviation

Results - Comparison To Dynamic Programming

Dynamic Programming New Buffering (ξ = 1)
Sinks Slack Deviation Runtime Slack Deviation Runtime

Avg Max (in s) Avg Max (in s)
1 0.1 39.3 4118 0.4 89.7 152
2 1.2 121.1 2555 2.0 101.5 119
3 2.3 166.3 1538 4.8 271.5 82
4 4.5 93.6 1620 7.3 116.9 91
5 4.3 119.5 1100 10.5 106.3 58
6 6.1 115.4 481 11.3 112.6 31
7 5.7 102.0 650 12.6 155.8 39
8 9.7 100.7 589 14.9 139.0 38
9 9.5 106.2 408 17.1 147.2 28
10 7.2 118.7 255 14.4 105.7 20
11–20 9.2 168.5 1891 16.7 135.3 151
21–30 17.2 167.2 610 24.8 179.4 52
31–50 43.8 227.9 1436 53.4 264.9 108
51–100 44.8 163.3 2114 71.1 230.7 146
101–200 16.1 145.0 1105 31.6 240.3 87
201–500 29.0 152.6 752 61.3 274.0 74
501–1000 87.1 229.3 425 172.2 422.1 36
> 1000 21.5 54.3 65 89.2 118.9 0

Total 1.5 229.3 21711 2.7 422.1 1321

Results - Parameter ξ

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

14

16

5

10

15

20

25

30

Tradeoff ξ

–
Sl
ac
k
de
vi
at
io
n
(p
s)

–
Re

pe
at
er
s
(1
05
)

References

C. J. Alpert, D. P. Mehta, S. S. Sapatnekar (editors),
“Handbook of Algorithms for Physical Design Automation”,
Auerbach Publishers Inc. (2008)

C. J. Alpert, M. Hrkic, J. Hu, A. B. Kahng, J. Lillis, B. Liu, S.
T. Quay, S. S. Sapatnekar and A. J. Sullivan, “Buffered
Steiner trees for difficult instances”, IEEE Transactions on
Computer-Aided Design 21, pages 3–14, 2002

C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. N. Sze,
“Accurate Estimation of Global Buffer Delay within a
Floorplan”. In Proc. of ICCAD, pages 706–711, 2004.

C. Bartoschek, S. Held, D. Rautenbach, and J. Vygen,
“Efficient generation of short and fast repeater tree
topologies”, Proceedings of the International Symposium on
Physical Design (2006), 120–127

Thank you

