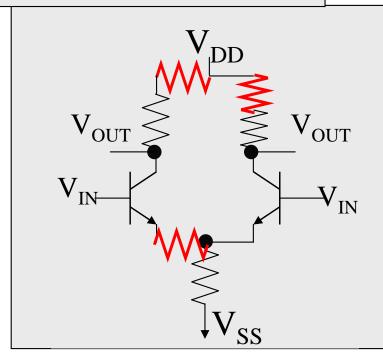
Improved Method of Cell Placement with Symmetry Constraints for Analog IC Layout Design

Shinichi Koda, Chikaaki Kodama and Kunihiro Fujiyoshi

Department of Electrical and Electronic Engineering Tokyo University of Agriculture & Technology


Outline

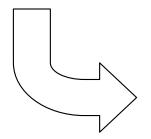
- 1. Background
- 2. Conventional Method
 - 2-1. Balasa's method and defects
- 3. Proposed Method
 - 3-1. Application of Okuda's approach
 - 3-2. Decrease of linear expression by substitution
 - 3-3. Speed-up by constraint graph
- 4. Experiments
- 5. Conclusions

Background

E.g. Differential Amp.

Problem peculiar to analog circuit layout

Parasitic elements are generated by cell placement and wiring.


Unbalanced parasitic elements.

Offset voltage: High

PSRR : Low

Necessary to balance parasitic elements.

Place cells symmetrically.

Background

The layout of analog ICs has been manually designed by experts.

Recently, Balasa et al. proposed a symmetric placement method using a sequence-pair.

(IEEE Trans.CAD 2000)

However, this method has some defects.

- -We clarify these defects.
- -We propose a new placement method with symmetry constraints.

Symmetry Constraints

Constraints of placing given cell pairs symmetrically to vertical or horizontal axes.

Symmetry Group

A set of cells constrained to be placed symmetrically to one axis.

Symmetric pair

A pair of cells constrained to be placed symmetrically to one axis.

Self symmetric cell

The center of the cell constrained to be placed on the axis.

 $c_l \quad e \quad b_s \quad c_r$

symmetric pairs: $(c_l, c_r), (d_l, d_r)$

self symmetric cells: a_s, b_s

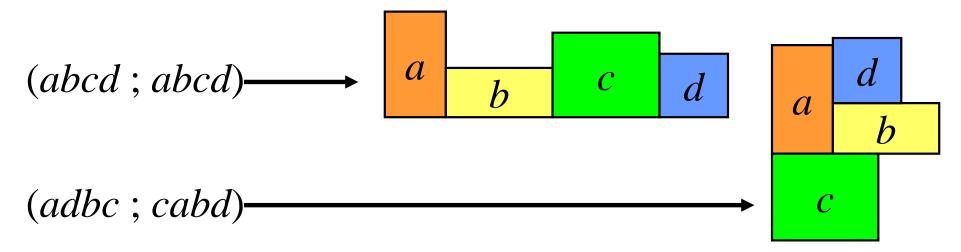
Symmetry constraints

$$\{a_s, b_s, (c_l, c_r), (d_l, d_r)\}$$

Suffix l: Left of pairs

Suffix r: Right of pairs

Suffix *s* : Self symmetric cell

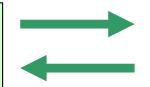

Sequence-pair (Murata et al. in IEEE Trans.CAD 1996)

-An ordered pair of $(\Gamma_+; \Gamma_-)$

 $(\Gamma_{+} \text{ and } \Gamma_{-} \text{ each is a permutation of rectangle names.})$

- -To show relative position of all rectangle pairs
- -Possible to represent any rectangle packing
- -Decoding time: $O(n^2)$ (n: the number of rectangles)

Γ_{+}	Γ	Relative position
a is before b	a is before b	a is left of b
a is before b	a is after b	a is above b

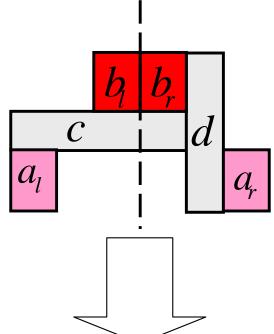


Balasa's method (IEEE Trans.CAD 2000)

(1) They revealed <u>necessary and sufficient condition</u> for <u>symmetric feasible seq-pair</u>.

Definition of symmetric feasible:

Given seq-pair *S* is symmetric feasible



There exists a placement satisfying

- Constraints imposed by seq-pair S
- Symmetry constraint for one axis.
- (2) They proposed a method of obtaining the closest packing satisfying the given constraints in polynomial order time.
- (3) They insisted that the method can be easily expanded into plural symmetry groups.

Symmetric feasible sequence-pair

Symmetry constraints $\{(a_l, a_r), (b_l, b_r)\}$

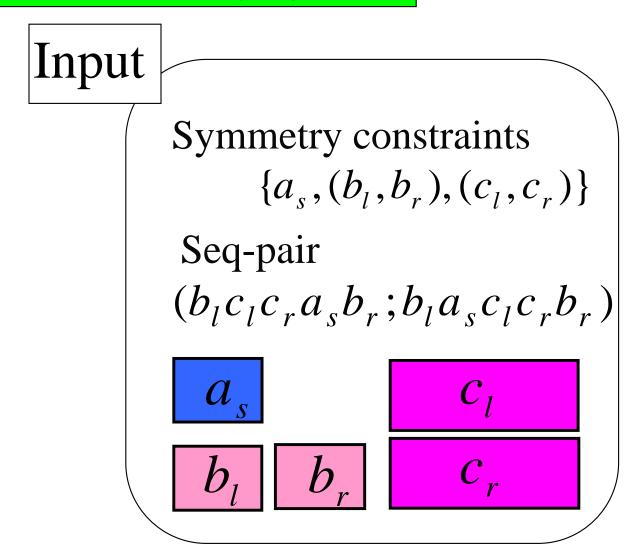
Unique sequence-pair $(b_l b_r c a_l d a_r; a_l c b_l b_r d a_r)$

Necessary and sufficient condition for symmetric feasible

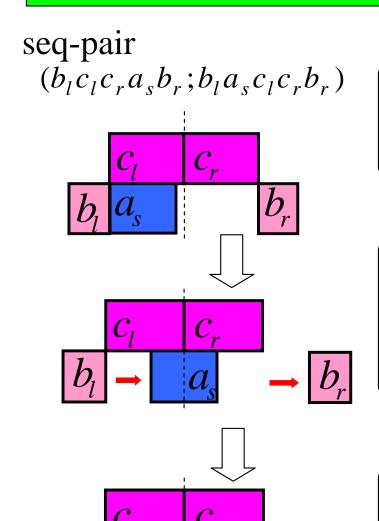
$$\Gamma^{-1}_{+}(a) < \Gamma^{-1}_{+}(b),$$

 $\Gamma^{-1}_{-}(\operatorname{sym}(b)) < \Gamma^{-1}_{-}(\operatorname{sym}(a))$
 $\operatorname{sym}(a) \text{ is pair of } a \ (a_s = \operatorname{sym}(a_s))$

 $(b_l b_r c \underline{a_l} d a_r; a_l c b_l \underline{b_r} d \underline{a_r})$


Not symmetric feasible

This is not necessary condition!!

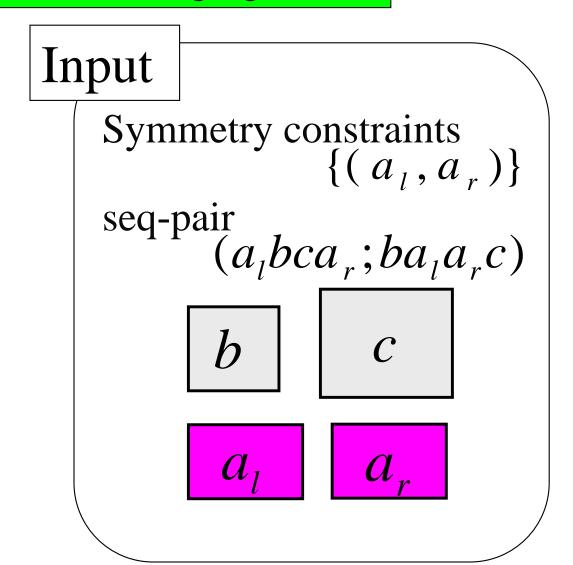

Searching only for symmetric feasible sequence-pair.

Optimum solutions may be overlooked.

X coordinate determining algorithm

X coordinate determining algorithm

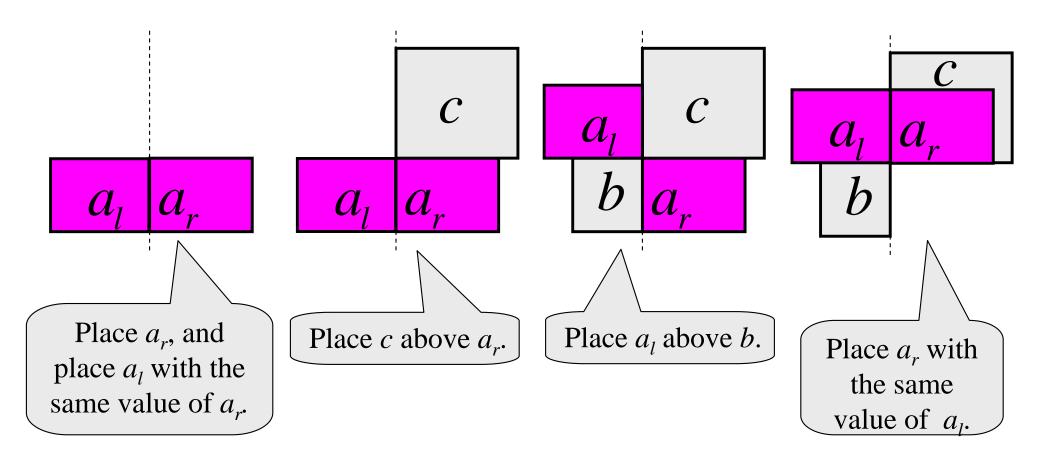
• Cells are packed leftwards based on a given sequence-pair and x coordinate of the axis is determined.


If cells can be placed symmetrically, right cells and self symmetric cells are moved rightwards one by one in order of Γ_+ .

- Cells constrained to be on the right are also moved rightwards by the same distance.

Left cells are moved leftwards one by one in reverse order of Γ_+ and they are placed symmetrically.

- Cells constrained to be on the left are also moved leftwards by the same distance.


Y coordinate determining algorithm

Y coordinate determining algorithm

- Determine y coordinate of each cell in reverse order of Γ_{+}
- When y coordinate of one cell in a symmetric pair is determined, determine y coordinate of the other cell to the same value.

sequence-pair $(a_lbca_r;ba_la_rc)$

Expanding into plural symmetry groups

Group1: $\{(a_r^I, a_l^I)\}$

Group2: $\{(b_l^2, b_r^2)\}$

No placement satisfying these constraints.

Sequence-pair
$$(b_l^2 a_l^1 a_r^1 b_r^2; a_l^1 b_l^2 b_r^2 a_r^1)$$

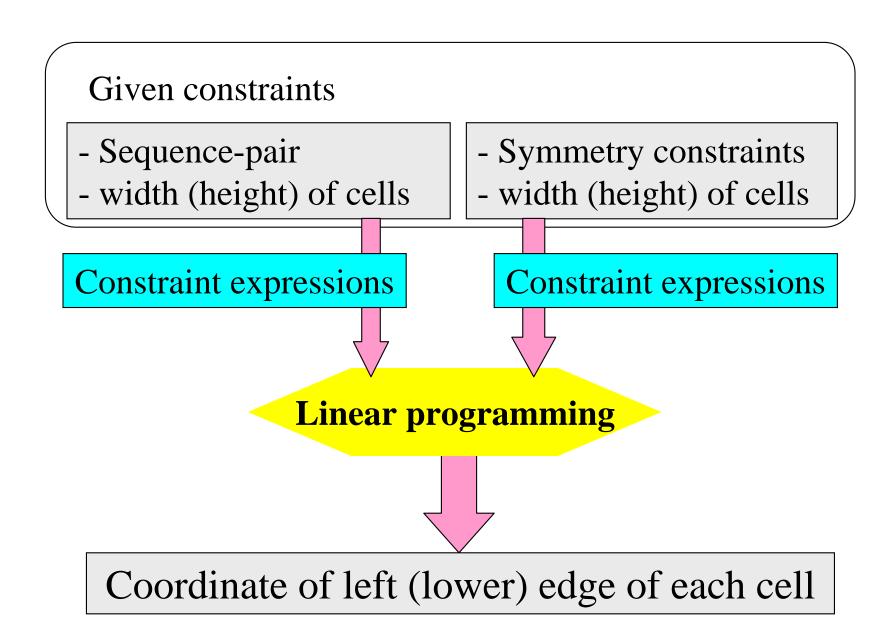
 b_l^2 is above a_l^1 a_r^1 is above b_r^2 Symmetric feasible seq-pair for each symmetry group.

In Balasa's method, how to handle more than one symmetry group is not clear.

Proposed method

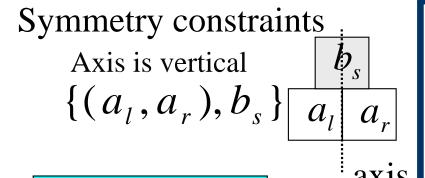
Feature 1.

Placement is obtained from a given seq-pair and symmetry constraints by <u>linear programming</u>.


Feature 2.

Speed-up is done by <u>reducing</u> the number of <u>variables</u> and <u>linear constraint expressions</u>.

Feature 3.


If symmetry constraints are only for vertical (horizontal) axes, speed-up is done by determining y (x) coordinates <u>using a graph-based algorithm.</u>

A simple combination

To obtain constraint expressions from symmetry constraints

Symmetry constraints
(width of cells) constraint expressions

X coordinate of left edge of cell a: x(a)

Y coordinate of lower edge of cell a : y(a)

Width of cell a: w(a)

X coordinate of axis : $axis_x$

symmetric pair

$$\begin{cases} axis_x - x(a_l) = (x(a_r) + w(a_r)) - axis_x \\ y(a_l) = y(a_r) \end{cases}$$

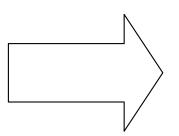
self symmetric cell

$$axis_x - x(b_s) = (x(b_s) + w(b_s)) - axis_x$$

To obtain constraints expressions from sequence-pair

Sequence-pair (width of cells) constraint expressions (Jae-Gon Kim, IEEE Trans. CAD, 2003.)

- The relation between x direction and y direction is independent.
- Explanation only for an x direction.


Sequence-pair

$$(b_s a_l a_r c \sin k; a_l a_r b_s c \sin k)$$

 $|a_l| |a_r| |b_s|$

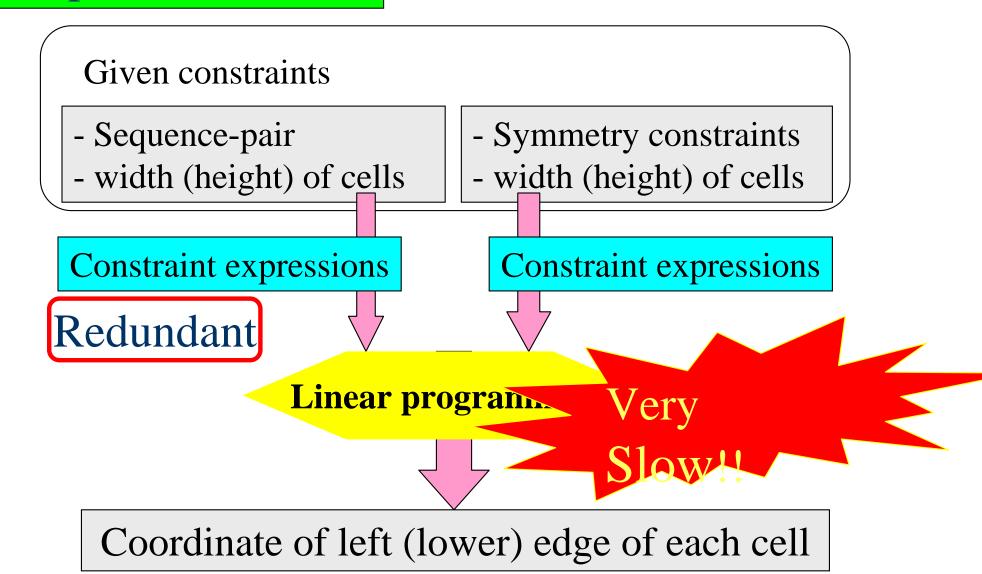
Insert a virtual cell sink (w(sink)=0) in the end of Γ_+ and Γ_- .

c is right of b_s a_r is right of a_l c is right of a_r sink is right of c

$$x(c) \ge x(b_s) + w(b_s)$$

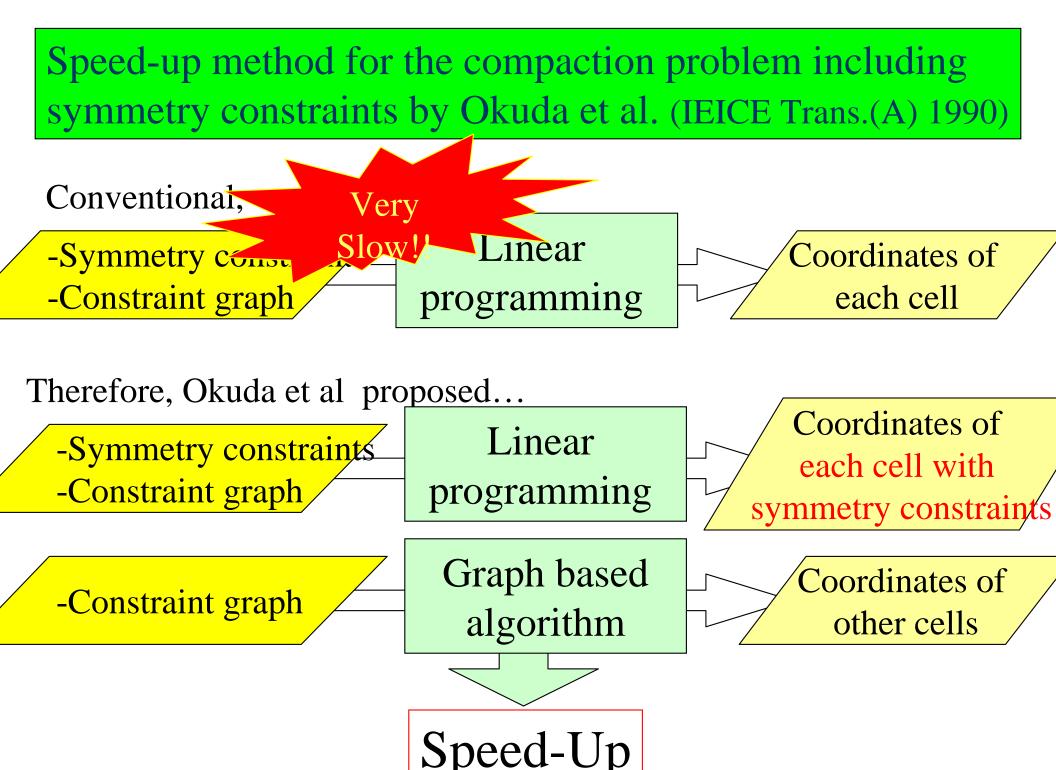
$$x(a_r) \ge x(a_l) + w(a_l)$$

$$x(c) \ge x(a_r) + w(a_r)$$


$$x(\sinh) \ge x(c) + w(c)$$

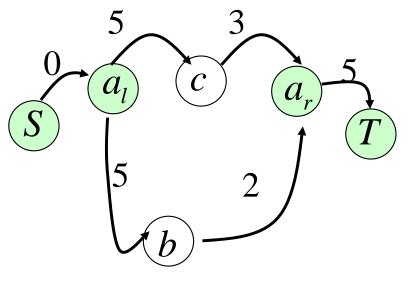
Obtained constraints expression

Linear programming

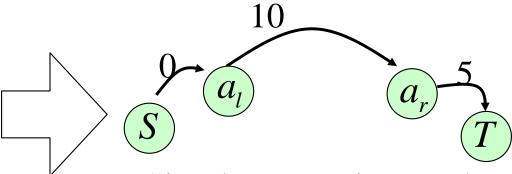

X coordinate of left edge of each cell

A simple combination

Therefore, we reduce


of variables and constraint expressions.

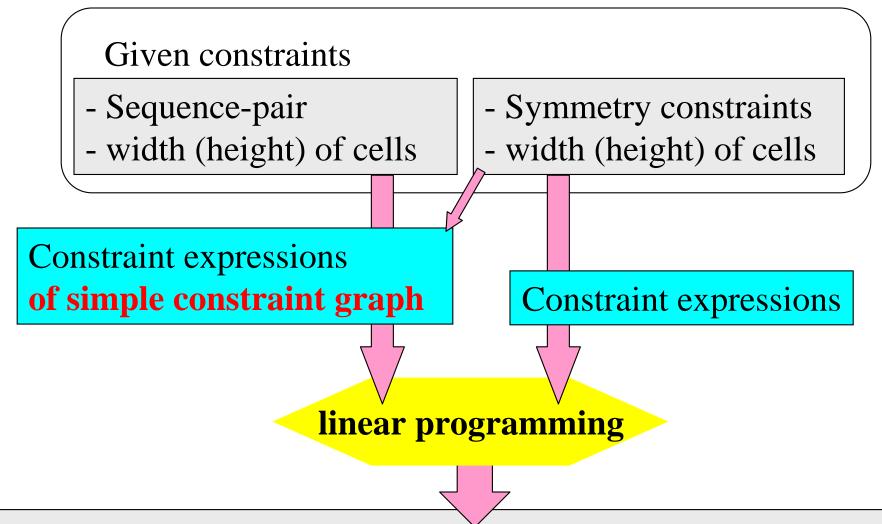
Speed-up method of the compaction problem including symmetry constraints by Okuda et al. (IEICE Trans.(A) 1990)


input

- Constraint graph

- Symmetry constraint $\{(a_1, a_r)\}$

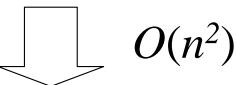
- 1. Pick up source, sink and vertices with symmetry constraints from a given constraint graph
- 2. Set the direct edge from *a* to *b*. Weight = the longest path value from *a* to *b*.



Simple constraint graph

Constraint expressions obtained

1. Application of speed-up method by Okuda



- Coordinate of each cell with symmetry constraints is determined by LP.
- Coordinates of other cells are determined by using graph.

1. Application of speed-up method by Okuda

Naive method


Seq-pair

Constraint graph

Simple Constraint graph

Set of linear constraint expressions

Proposed method

Seq-pair

Set of constraint expressions

s: #cells with symmetry constraints

n: #all cells

e: #constraint expressions

We obtain a set of constraint expressions faster.

2. Speed-up by substitution

$$axix_x - x(a_s) = x(a_s) + w(a_s) - axix_x$$
$$axix_x - x(b_r) = x(b_l) + w(b_l) - axix_x$$

$$x(a_s) = axix_x - w(a_s) / 2$$

$$x(b_r) = 2 axix_x - x(b_l) - w(b_l)$$

Seq-pair
$$(b_l a_s b_r; a_s b_l b_r) \longrightarrow b_l$$

$$b_l b_r$$

$$x(a_s) + w(a_s) \le x(b_r)$$

$$x(b_l) + w(b_l) \le x(b_r)$$

$$axix_x - x(b_l) \le w(b_l) - w(a_s) / 2$$

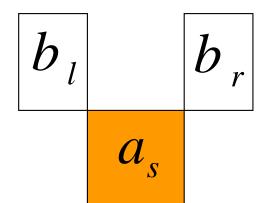
$$axix_x - x(b_l) \le w(b_l)$$

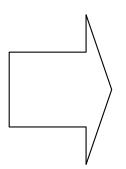
2 variables and

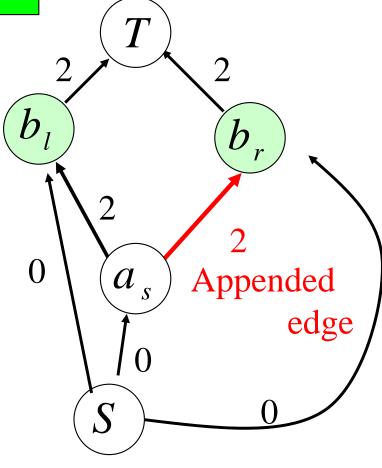
3 expressions are reduced

 a_{s}

Remove redundant constraint expressions.


$$axix_x - x(b_l) \le w(b_l) - w(a_s) / 2$$


3. Speed-up by determining y coordinates by using graph.


Seq-pair
$$(b_l a_s b_r; a_s b_l b_r)$$

Symmetry constraint

$$\{a_s,(b_l,b_r)\}$$

Obtain constraint graph from sequence-pair.
 If an edge is inputted to one of symmetric pair,

append an edge with the same weight from the same vertex to the other.

Can be decoded in $O(n^2)$ time

Experiments

To confirm improvement of the proposed methods.

(1) Experimental comparison in CPU time

To confirm whether the proposed method can obtain nearly optimum solutions or not.

(2) Placement experiments

Note: Linear constraint expressions are solved by simplex method.

MOVE operation:

Choose two elements randomly from a given seq-pair $(\Gamma_+;\Gamma_-)$ and exchange each other in both Γ_+ and Γ_- or in either of them.

(1) Experimental comparison of CPUtime

Method 0. A simple combination.(only using LP)

Method 1. Using simple constraint graph.

Method 2. Using substitution with Method 1.

Method 3. Y coordinate determined by using graph with Method 2.

all pair self groups time[s] time[s] time[s] 8 1 0 1 181.8 83.1 66.8 (1.00) (0.45) (0.37) 10 4 0 1 546.9 358.3 256.4								
all pair self self	Method 3	Method 2	Method 1	Method 0			#cells	
10 4 0 1 546.9 358.3 256.4	time[s]	time[s]	time[s]	time[s]	groups	self	pair	all
10 4 0 1 546.9 358.3 256.4	26.1	66.8	83.1	181.8	1	0	1	8
	(0.14)	(0.37)	(0.45)	(1.00)				
(1.00) (0.67) (0.48)	69.8	256.4	358.3	546.9	1	0	4	10
	(0.13)	(0.48)	(0.67)	(1.00)				
9 3 2 275.3 167.7 133.6	46.2	133.6	167.7	275.3	2	2	3	9
$(1.00) \boxed{7/100} (0.48)$	(0.17)	(0.48)	7/100	(1.00)				
9 1 1 1 166 47.8 39.1	2	39.1		166	1	1	1	9
$(0.29) \qquad (0.22)$	(0.12)	(0.22)	(0.29)	(1.00)				
16 4 2 2 1466.7 581.2 397.9	133.0	397.9	581.2	1466.7	2	2	4	16
$(1.00) \qquad (0.40) \qquad (0.27)$	(0.07)	(0.27)	(0.40)	(1.00)				

(2) Placement experiment

Method 3 is used.

#Cells: 65 (from IEEE Trans. CAD'04 Balasa)

#Symmetry groups: 3

Red: #Pair 6 #Self 0

Yellow: #Pair 4 #Self 0

Green: #Pair 2 #Self 1

Packing ratio: 106.53%

Time: 6.68[min]

(Pentium4 3.2GHz)

(2) Placement experiment

Method 3 is used.

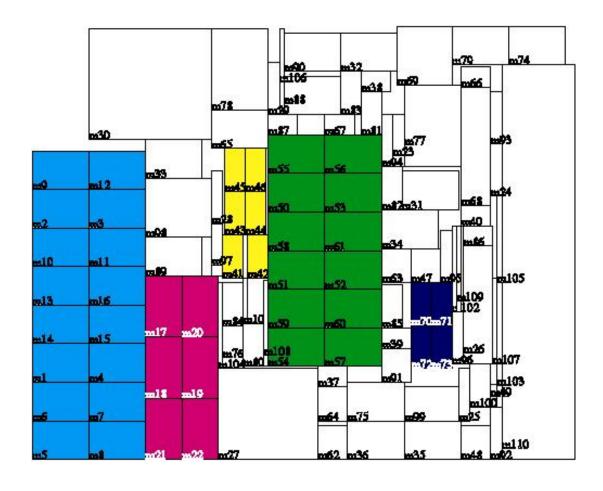
#Cell:110 (from IEEE Trans. CAD'04 Balasa)

#Symmetry groups:5

Cyan :#Pair 8 #Self 0

Magenta: #Pair 3 #Self 0

Yellow: #Pair 3 #Self 0


Green :#Pair 6 #Self 0

Blue :#Pair 2 #Self 0

Packing ratio: 108.58%

Time: 54.2[min]

(Pentium4 3.2GHz)

(2) Placement experiment

Experimental comparisons between the results of proposed method (Pentium4 3.2GHz) and Balasa's results (Sun Blade 100).

Design	#Cell	#Symmetry	Balasa's results		Proposed method	
		groups	Time [min]		Time	Area
biasynth 2p4g	65	8+12+5	13.00	[%]15.00	[min] 6.68	106.53
lnamixbias 2p4g	110	16+6+6	47.07	109.36	54.20	108.58
		+12+4				

Column 3 shows the #cells (in symmetric pairs or self-symmetric) in each group.

Conclusions

We proposed an efficient method of obtaining cell placement satisfying both the given symmetry constraints and the topology constraints imposed by a given sequence-pair.

- In order to shorten the time required by linear programming, the number of variables and constraint expressions are reduced by substituting expressions for dependent variables.
- If the symmetry axes are only vertical, we obtain the placement more quickly by using vertical constraint graph based on a seq-pair.

Future problems

- Experiments based on industrial data of analog circuits.
- Further speed-up of the proposed method.
- Handling other constraints of analog circuits.

Thank you!!

Balasa's method defect

Balasa's Method is ...

- 1. The closest cells placement satisfying the symmetry and topology constraints cannot be obtained.
- 2. Some cells overlap each other.
- 3. It is unclear how to handle more than one set of cells with given symmetry constraints.
- 4. A placement which cannot be represented by the symmetric-feasible seq-pair exists.

Seq-pair
$$(a_{l}bc_{s}a_{r} \text{ sink }; a_{l}c_{s}ba_{r} \text{ sink})$$
Symmetry constraints
$$\{(a_{l}, a_{r}), c_{s}\}$$
Width of cells
$$a_{l}c_{s}a_{r}a_{r}$$

$$a_{l}c_{s}a_{r}a_{r}$$

	al	Cs	ar	sink
aı				
Cs				
ar				
sink				

Focus to inverse order from the last cell of Γ

Seq-pair

$$(a_lbc_sa_r ext{ sink }; a_lc_sba_r ext{ sink })$$

Symmetry constraint

 $\{(a_l, a_r), c_s\}$

Width of cells

 $a_lc_sa_r ext{ width of cells}$
 $a_lc_sa_r ext{ a}$
 $a_lc_sa_r ext{ width of cells}$

Calculate all longest paths length from focused cell to cell which can arrive

	aı	Cs	ar	sink
al				
Cs				
ar				
sink				

Seq-pair

$$(a_lbc_sa_r ext{ sink }; a_lc_sba_r ext{ sink })$$

Symmetry constraint

 $\{(a_l, a_r), c_s\}$

Width of cell

 $a_lc_sa_r ext{ alis } b ext{:} 3 c_s ext{:} 2 ar ext{:} 5$

$$x(a_r) + 5 \le \text{sink}$$

Register the longest path value with a matrix and get constraint expression.

	al	Cs	ar	sink
al				
Cs				
a r				5
sink				

Seq-pair
$$(a_{l}bc_{s}a_{r} \text{ sink }; a_{l}c_{s}ba_{r} \text{ sink})$$
Symmetry constraint
$$\{(a_{l}, a_{r}), c_{s}\}$$
Width of cells
$$al: 5 b: 3 c_{s}: 2 ar: 5$$

$$x(a_r) + 5 \le \text{sink}$$

If focused cell does not have symmetry constraints, I hold nothing

	al	Cs	ar	sink
al				
Cs				
a r				5
sink				

Seq-pair
$$(a_{l}bc_{s}a_{r} \text{ sink }; a_{l}c_{s}ba_{r} \text{ sink})$$
Symmetry constraint
$$\{(a_{l}, a_{r}), c_{s}\}$$
Width of cells
$$a_{l}c_{s}a_{r}a_{r}$$
Width of cells
$$a_{l}5b:3c_{s}:2a_{r}:5$$

$$x(a_r) + 5 \le \text{sink}$$

	al	Cs	ar	sink
aı				
Cs				
ar				5
sink				

Seq-pair
$$(a_{l}bc_{s}a_{r} \text{ sink }; a_{l}c_{s}ba_{r} \text{ sink})$$
Symmetry constraint
$$\{(a_{l}, a_{r}), c_{s}\}$$
Width of cells
$$a_{l}c_{s}a_{r}a_{r}$$
Width of cells
$$a_{l}5b:3c_{s}:2a_{r}:5$$

$$x(a_r) + 5 \le \text{sink}$$

	al	Cs	ar	sink
aı				
Cs			2	
ar				5
sink				

Seq-pair
$$(a_{l}bc_{s}a_{r} \text{ sink }; a_{l}c_{s}ba_{r} \text{ sink})$$
Symmetry constraint
$$\{(a_{l}, a_{r}), c_{s}\}$$
Width of cells
$$a_{l}c_{s}a_{r}a_{r}$$
Width of cells
$$a_{l}5b:3c_{s}:2a_{r}:5$$

$$x(a_r) + 5 \le \text{sink}$$
$$x(c_s) + 2 \le x(a_r)$$

	al	Cs	ar	sink
aı				
Cs			2	
ar				5
sink				

Seq-pair focus
$$(a_lbc_sa_r \sin k; a_lc_sba_r \sin k)$$
Symmetry constarint
$$(a_lbc_sa_r \sin k; a_lc_sba_r \sin k)$$

$$(a_l, a_r, a_r), c_s$$
Width of cells
$$al:5 \ b:3 \ c_s:2 \ ar:5$$

$$x(a_r) + 5 \le \text{sink}$$
$$x(c_s) + 2 \le x(a_r)$$

LPV $c_s \sim a_r \sim \sin k = \text{LPV } c_s \sim \sin k$. Therefore, constraint expression does not make It's unnecessary transitive constraint.

	aı	Cs	ar	sink
al				
Cs			2	2+5
ar				5
sink				

Seq-pair focus
$$(a_lbc_sa_r \sin k; a_lc_sba_r \sin k)$$
Symmetry constraint
$$\{(a_l, a_r), c_s\}$$
Symmetry constraint
$$\{(a_l, a_r), c_s\}$$
Width of cells
$$al:5 \ b:3 \ c_s:2 \ ar:5$$

$$x(a_r) + 5 \le \text{sink}$$
$$x(c_s) + 2 \le x(a_r)$$

	al	Cs	ar	sink
aı				
Cs			2	7
a r				5
sink				

Seq-pair

$$(a_lbc_sa_r ext{ sink }; a_lc_sba_r ext{ sink })$$

Symmetry constraint

 $\{(a_l, a_r), c_s\}$

Width of cells

 $a_lc_sa_r ext{ alongest path value}$
 $a_lc_sa_r ext{ alongest path value}$
 $a_lc_sa_r ext{ alongest path value}$
 $a_lc_sa_r ext{ alongest path value}$

$$x(a_r) + 5 \le \text{sink}$$

$$x(c_s) + 2 \le x(a_r)$$

$$x(a_l) + 5 \le x(c_s)$$

	al	Cs	ar	sink
al		5		
Cs			2	7
<i>ar</i>				5
sink				

Seq-pair focus
$$(a_{l}bc_{s}a_{r} \text{ sink }; a_{l}c_{s}ba_{r} \text{ sink}) \text{Symmetry constraint}$$

$$(a_{l}bc_{s}a_{r} \text{ sink }; a_{l}c_{s}ba_{r} \text{ sink}) \text{Symmetry constraint}$$

$$\{(a_{l}, a_{r}), c_{s}\}$$
Width of cell
$$a_{l} c_{s} a_{r} a_{r}$$

$$a_{l} c_{s} a_{r} a_{r}$$

$$x(a_r) + 5 \le \text{sink} \qquad x(a_l) + 8 \le x(a_r)$$

$$x(c_s) + 2 \le x(a_r)$$

$$x(a_l) + 5 \le x(c_s)$$

LPV $a_l \sim a_r < \text{LPV } a_l \sim c_s \sim a_r$ This constraint expression was made.

	aı	Cs	a r	sink
aı		5	5+2	
Cs			2	7
ar				5
sink				

Seq-pair

$$(a_lbc_sa_r ext{ sink }; a_lc_sba_r ext{ sink })$$

Symmetry constaints

 $\{(a_l, a_r), c_s\}$

Width of cells

 $a_lc_sa_r ext{ alongest path value}$
 $a_lc_sa_r ext{ alongest path value}$
 $a_lc_sa_r ext{ alongest path value}$
 $a_lc_sa_r ext{ alongest path value}$

$$x(a_r) + 5 \le \sinh \qquad x(a_l) + 8 \le x(a_r)$$

$$x(c_s) + 2 \le x(a_r)$$

$$x(a_l) + 5 \le x(c_s)$$

	aı	Cs	<i>ar</i>	sink
aı		5	8	8+5
Cs			2	7
ar				5
sink				

Seq-pair
$$(a_l b c_s a_r sink; a_l c_s b a_r sink)$$

$$b$$

Symmetry constraint a_l , a_r), c_s }
Width of cell $ai:5 \ b:3 \ c_s:2 \ ar:5$

$$x(a_r) + 5 \le \operatorname{sink} \quad x(a_l) + 8 \le x(a_r)$$

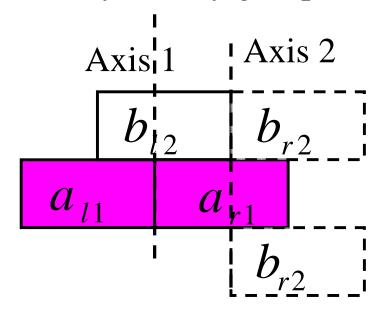
$$x(c_s) + 2 \le x(a_r)$$

$$x(a_l) + 5 \le x(c_s)$$

The constraint expressions of simple constraint graph was obtained from seq-pair directly.

	al	Cs	ar	sink
al		5	8	13
Cs			2	7
<i>ar</i>				5
sink				

Balasa's method defect 4


When there are plural symmetry groups, they insist that can expand it easily

There is not placement satisfy these constraints

Axis1:
$$a_{l1}, a_{r1}$$
 is pair b_{l2}, b_{r2}

Sequence-pair $(b_{l2}a_{l1}a_{r1}b_{r2}; a_{l1}b_{l2}b_{r2}a_{r1})$
 b_{l2} On the a_{l1}
 a_{r1} On the b_{r2}

It is symmetric-feasible about each symmetry groups.

It is unclear how to handle more than one set of cells with given symmetry constraints.