
1

Variation Tolerant Buffered
Clock Network Synthesis

with Cross Links

Anand Rajaram † ‡ David Z. Pan †
† Dept. of ECE, UT-Austin

‡ Texas Instruments, Dallas

Sponsored by SRC and IBM Faculty Award

2

Presentation Outline

Introduction
Link Insertion and Challenges for Buffered
Clock Trees
Linked Buffered Clock Tree Synthesis
Experimental Results
Conclusions

3

Clock Network
Stringent skew budget for multi-gHz designs
Global in nature (span the entire chip)
Skew is very sensitive to variations

› Manufacturing process variations (P)
› Supply voltage variations (V)
› Temperature variations (T)

=> Variation-tolerant clock network Temp
(oC)

(source: Intel)

tox

Gate length

Gate variations
Temp variations

4

Approaches for Reducing
Skew Variability

Buffer & wire sizing [Pullela et al., DAC’93; Chung et al.,
ICCAD’94; Wang et al., ISPD’04]

Variation aware routing [Lin et al., ICCAD’94; Lu et al.,
ISPD’03; Padmanabhan+, ISPD’06]
Temperature aware clock optimization [Cho+,
ICCAD’05]

Non-tree clock network
› McCoy+, ETC’94; Xue et al., ICCAD’95; Vandenberghe et al.,

ICCAD’97; Kurd et. al. JSSC’01; Su et. al. ICCAD’01; Restle et al.
JSSC’01

› Link based non-tree clock networks: Rajaram et al., DAC’04,
ISPD’05, ISQED’06; Venkataraman+, ICCAD’05

5

Non-tree: Spine & Mesh

Applied in Pentium processor

Spines

Clock sinks or local sub-networks

Clock sinks or local sub-networks

Clock sinks or local sub-networks

Applied in IBM microprocessor
Very effective, huge wire

[Restle et. al, JSSC’01]

[Su et. al, ICCAD’01]

[Kurd et. al. JSSC’01]

6

Non-tree: Link Perspective

Non-tree = tree + links
How to select link pairs is the key problem
Link = link_capacitors + link_resistor

u

w

i

w

u

Rl

C/2 C/2
u w

Rl

C/2

C/2

[Rajaram et al, DAC’04]

7

Guidelines for Link Insertion

Select nodes physically close to each other

Select nodes which are hierarchically far apart

Select nodes with equal nominal delay

Select nodes closer to leaf nodes

[Rajaram et al, DAC’04]

8

Challenges for Buffered CTS
Link insertion may cause multi-driver nets

› Short circuit avoidance: ∆max < Delaymin [Venkataraman+ ICCAD’05]

Link insertion must have high delay accuracy cf. SPICE
› Elmore delay not good fidelity cf. SPICE for buffered clock trees

[Wang et. al, ISPD04]

∆

9

A B

S

P Q

Input Slew of buffers &
Delay from Buffers to Sinks

Load seen by buffers

Select link A-B or not?

Delays at A and
B same?

A Chicken-Egg problem!

Challenges for Buffered CTS

10

Venkataraman+ ICCAD’05

Addressed the problem of link insertion in buffered
clock tree by

› Using special tunable buffers to break the chicken-egg
problem described before

› Using SPICE to do the node tuning

Drawbacks:
› Tunable buffers – not generally available
› Will consume extra power/area due to extra

capacitances in tunable buffers
› Slow on very large clock trees due to use of SPICE

I1 I2 I3

11

Our Contributions

Link-insertion friendly balanced Clock Tree
Synthesis algorithm

› A new merging scheme for bottom-up CTS
» guarantees balanced buffered clock tree while trying to

minimize wirelength

› Uses an Elmore like, but more accurate iterative
delay calculator used by IBM [Puri et. al.
GLVLSI’02] to break the chicken-egg dilemma

Uses regular buffers instead of the tunable
buffers of Venkataraman et. al ICCAD’05

› Can be applied on any general design
› No unwanted increase in capacitance/power

12

Why Balanced Clock Tree?

Current CTS Algorithms mostly focus on
skews at nominal delay values
Due to variation effects, delays and
skews vary

› Interconnect and Buffers have different
variation patterns

Having a balanced clock tree is likely to
minimize the variational effects
Balanced Clock Tree will reduce the
possibility of short-circuit currents caused
by link insertion

A B

S

P Q

8
4

8

10

10

Unbalanced

A B

S

P Q

Balanced

13

Balanced CTS Algorithm:
Main Features

P

A B

Sub-trees A & B are merged only when the effective
cap after merging is less than the cap limit Climit

Buffers are inserted at the root of all sub-trees if no
merging is possible without violating the cap limit.
The required slew information is propagated in a
bottom-up manner for accurate delay calculation

› Need accurate slew and Ceff information at buffer output

P

A B
Ceff1 Ceff2

slew1 slew2

Climit

14

Backward Slew Propagation

Based on Puri et. al. GLVLSI’02: given an input transition time ta
at node A, the slew at node B is given as:

at
CRx 2* where =

)1(1
1
x

a
b

ex

tt
−

−−
=

R

C2ta

A
B

C1

))1(1(then ,* Let
1

2 x

b
exxy

t
CRy

−
−−==

Value of y bounded by 0.5 for all x
1-1 correspondence (x, y)
Given a tb target, required ta can be
obtained

15

Pick Sub-trees to be Merged

Given N sub-trees to merge in list U:
1. Pick the sub-tree with minimum root-sink delay - Ti
2. Of all available sub-trees, pick Tj such that

MergingCost(Ti, Tj) is minimized.
3. Merge Ti, Tj to get Tk. Remove Ti, Tj from list U. Add

Tk to list U.

Step 1 for delay balance. Smaller sub-trees will be
merged first.

Step 2 for MergingCost (e.g. wirelength) minimization

16

Balanced CTS Algorithm

Pick the node with min delay. Initially, since all sinks have zero delay, pick
the sink with min load cap.
Merge the picked node with another node such that merging cost is minimized
Without violating Cap Limit

Repeat the process till no node pairs can be merged without cap limit violation

A B

C D

Sub-trees A,B, C and D cannot be merged without violating Climit

17

Balanced CTS Algorithm

Buffer all the sub-trees at the same time. This guarantees balanced clock tree
by construction. The load imbalance between buffers is also minimized.

A B

C D

Repeat the process to obtain the complete buffered clock tree

18

Overall Algorithm

1. Construct the balanced buffered clock tree (with
accurate delay/slew model)

2. Select the link pairs for insertion using modified
MST algorithm [Rajaram et. al. ISPD’05] that
uses physical and delay proximity for link
selection

3. Using link capacitance as extra sink load
capacitance, and tune the clock tree with the
same topology as in step 1

4. Add the link resistance to the selected node pairs

19

Construct a balanced clock tree

A Simple Example

Buffers

Link resistance

Sinks

Sinks selected
for link insertion

Sinks with
added
Link cap.

20

A Simple Example

Select the link pairs for insertion using modified MST algorithm
[Rajaram et. al. ISPD05] that uses physical and delay proximity for link
selection

Buffers

Link resistance

Sinks

Sinks selected
for link insertion

Sinks with
added
Link cap.

21

A Simple Example

Construct a new clock tree with the same topology as in step 1
using the balanced CTS algorithm

Buffers

Link resistance

Sinks

Sinks selected
for link insertion

Sinks with
added
Link cap.

22

A Simple Example

Add the link resistance to the selected node pairs

Buffers

Link resistance

Sinks

Sinks selected
for link insertion

Sinks with
added
Link cap.

23

Experimental Setup

Benchmarks: r1-r5 from Exact Zero Skew work [Tsay,
ICCAD’91]
Variations considered (σ = 5%)

› Buffer L, Tox
› Interconnect width
› Load Capacitance

Skew variability measure: Average magnitude of skew in
SPICE with 500 Monte Carlo trials.

31001903862598267No. of sinks

r5r4r3R2r1Benchmark

24

Experimental Setup

Results compared to
› Chen et. al, DATE’96 (balanced CTS)

» Equalizes delay at each stage of clock tree by wire
elongation

» Excessive wire elongation results in excessive wire length

› Chaturvedi et al, ISQED’04 (best wire-length for CTS)
» Results in unbalanced clock tree

Cannot compare with [Venkataraman+
ICCAD’05] directly

› Special tunable buffers not available
› Small benchmarks used in their work (running SPICE

directly to construct/tune the clock network)

25

Experimental Results

All results normalized w.r.t. Chaturvedi et. al
The number of buffers used are similar
All three algorithms were tuned to achieve the
same slew rate requirements

0

0.2

0.4

0.6

0.8

1

S
ta

n
d

ar
d

 D
ev

ia
ti

w
.r

.t
. c

lo
ck

 t
re

e

r1 r2 r3 r4 r5

Test cases

Skew Variability

Chaturvedi
Chen
Bal. CTS
BCTS+Link

0
2
4
6
8

10
12
14

W
ir

el
en

g
t

r1 r2 r3 r4 r5

Test cases

Total Wire Length Comparison

Chaturvedi
Chen
Bal. CTS
BCTS+Link

26

Conclusions

We have proposed a link insertion friendly
balanced buffered CTS algorithm
Ordinary buffers are used (instead of special
tunable buffers)
Our merging scheme achieves balanced clock tree
without excessive cost of wire length
Skew variation is significantly reduced
Link insertion becomes more practical even for
ASICs…

