Efficient Decoupling Capacitor Planning via Convex Programming Methods

Andrew B. Kahng, Bao Liu, Sheldon X.-D. Tan*

UC San Diego, *UC Riverside

Outline

- Background
- Problem Formulation
- Semi-Definite Program
- Linear Program
- Scalability Enhancement
- Experiments
- Conclusion

P/G Supply Voltage Integrity

- Increasing Power/Ground supply voltage degradation in latest technologies due to increasing
 - Interconnect resistance
 - Supply current density
 - Clock frequency
- Degraded power/ground supply voltages and relatively stable transistor threshold voltage leaves a decreased noise margin and increased vulnerability to logic malfunction
- Degraded P/G supply voltages degrades transistor and circuit performance

P/G Network Optimization

- Supply voltage degradation includes
 - ⊙ DC IR drop
 - ⊙ AC IR drop
 - ⊙ L dl/dt drop
- P/G network optimization techniques include
 - Wire-sizing
 - Edge augmentation
 - Decoupling capacitor insertion

Decoupling Capacitors

- Are usually CMOS capacitors
- Form charge reservoirs → provide short-cuts for supply currents → reduce supply voltage degradation
- Form low pass filters → remove high frequency components in supply currents and cancel inductance effect → reduce supply voltage degradation

Decoupling Capacitor Insertion

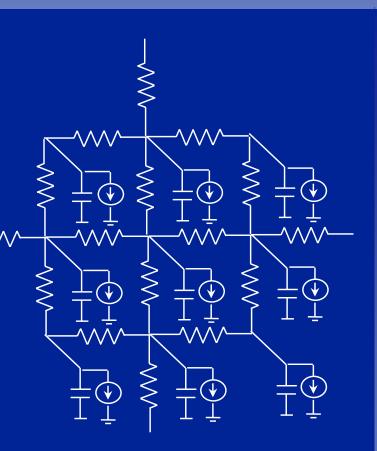
- θ heuristic
 - Supply noise charge x a scaling factor
- Sensitivity analysis + greedy optimization
 - A mxn Jacobian matrix for m violation nodes and n decoupling capacitor nodes
- Adjoint sensitivity analysis + iterative quadratic optimization
 - Adjoint network for each supply current source's contribution
 - Time domain integral of supply voltage drop
 - Remains a nonlinear optimization problem

Outline

- Background
- Problem Formulation
- Semi-Definite Program
- Linear Program
- Scalability Enhancement
- Experiments
- Conclusion

Modified Nodal Analysis

- (G+sC)V = Bu+J
- V = free node voltages
- u = reference node voltage
- B = conductance between free, nodes and the reference node
- J = free node supply currents
- C = ground capacitance matrix
- G = conductance matrix
- G_{ij} = conductance between two free nodes i and j
- $\bullet \quad \overline{G_{ii}} = S_{j!=i} G_{ij} + B_i$



Problem Formulation

Given

an RLC P/G supply network G

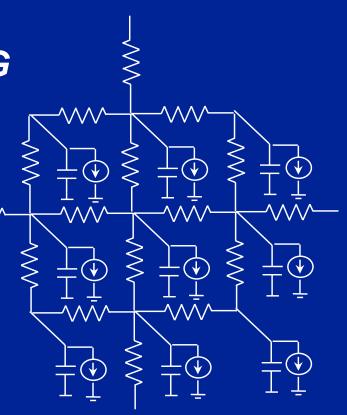
• free node supply currents J

maximum supply current duration time T

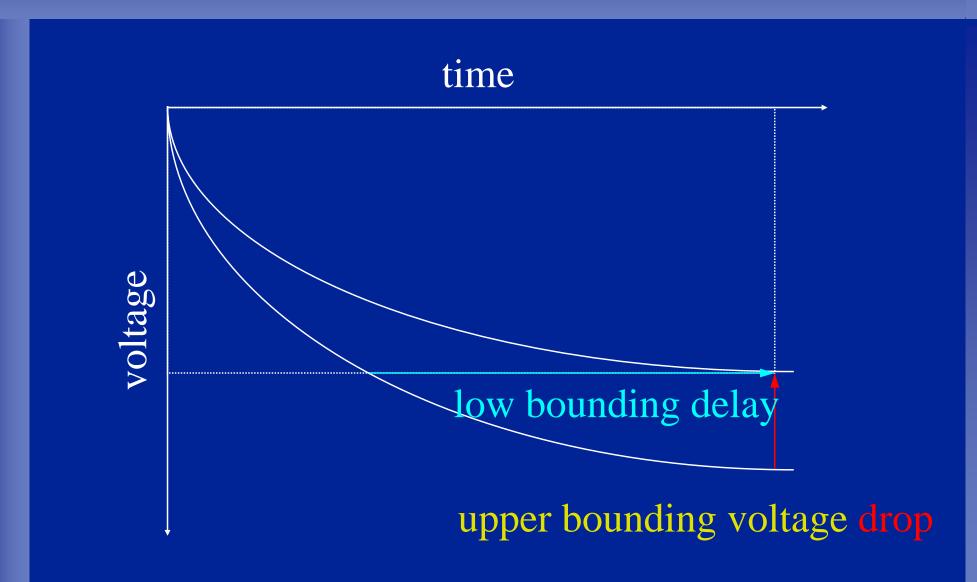
supply voltage degradation bound αV_{dd}

Find

• minimum decoupling capacitance Σ_i C_{ii} such that $\Delta V_i(t) < \alpha V_{dd}$ for all i in G, t < T



Duality of Timing and Voltage Bounds



Semi-Definite Program

For timing optimization

Minimize
Subject to

$$t$$
 $tG-C \ge 0$

- M = t G C is positive semi-definite $\rightarrow x^T M x \ge 0 \ \forall x$
- t needs to be larger than the eigenvalues of G⁻¹C,
 e.g., RC time constants of the interconnect

Semi-Definite Program

For supply voltage optimization

Minimize
Subject to

$$\Sigma_i C_{ii}$$
 $C - T G \ge 0$

- M = C T G is positive semi-definite $\rightarrow x^T M x \ge 0 \ \forall x$
- T needs to be smaller than the eigenvalues of G-1C, e.g., RC time constants of the interconnect
- Loose bound → relaxation to a convex super-space

Linear Program

- Provides tighter bounds by considering differences in
 - Node voltage bounds
 - Supply currents
 - Poles for residues
- Upper bounds supply current waveforms by step functions
- Upper bounds 50% interconnect delay by Elmore delay

Moment Computation

$$V = (I - sG^{-1}C)^{-1}G^{-1}J$$

$$J = \frac{\hat{J}}{s}$$

$$V = M_{-1}S^{-1} + M_0 + M_1s + \dots M_i s^i$$

$$M_{-1} = G^{-1}\hat{J}$$

$$M_0 = G^{-1}CG^{-1}\hat{J}$$

$$M_i = (G^{-1}C)^{i+1}G^{-1}\hat{J}$$

$$T^{Elm} = \frac{M_0}{M_{-1}} = \frac{G^{-1}CG^{-1}J}{G^{-1}J}$$

$$U = M_{-1} = G_{-1}J$$

$$U(1 - e^{-\frac{t}{T^{Elm}}}) \le V(t) \le U(1 - e^{-\frac{t}{kT^{Elm}}})$$

Linear Program Decap Insertion

Minimize

$$\sum_i C_{ii}$$

Subject to

$$\frac{G^{-1}CG^{-1}J}{G^{-1}J} \ge -\frac{kT}{\lg(1 - \frac{\alpha V_{dd}}{G^{-1}J})}$$

- $k = 1 \qquad \frac{1}{\lg 2}$
- For a node which DC voltage is within the bound, e.g., $G^{-1}\hat{J} \le \alpha V_{dd}$, $\lg x = -\infty, x < 0$ gives 0 right-hand side
- Physical constraints
- Inductance effect

Numerical Example

Semi-definite Program

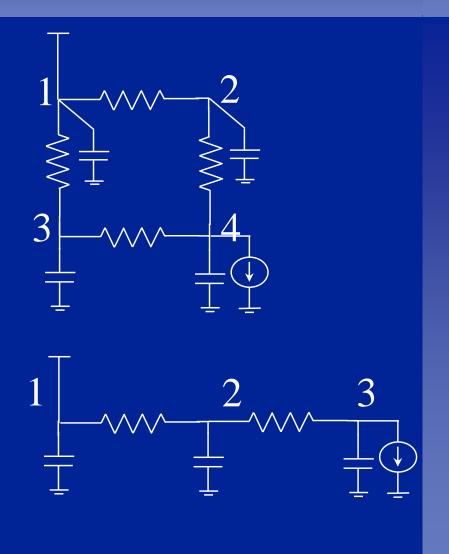
$$G = \begin{bmatrix} 4 & 2 \\ -2 & 2 \end{bmatrix}$$

$$G^{-1} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}$$

$$C - TG = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$G^{-1}C = \begin{bmatrix} 3 & 2 \\ 3 & 4 \end{bmatrix}$$



which eigenvalues [1,6] larger than 1(ns)

Numerical Example

- Linear Program
- Given

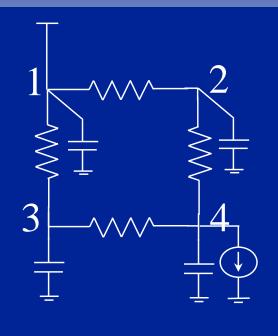
$$G^{-1}\hat{J} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}$$

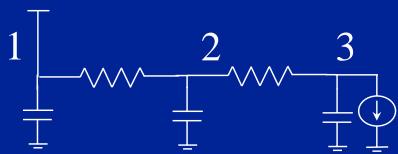
Minimize

$$c_2 + c_3$$

Subject to

$$0.5c_2 + c_3 > 0$$
$$0.25c_2 + c_3 > \frac{1}{\lg 2}$$





 \rightarrow optimum c₃=1/lg2

Numerical Example

- θ heuristic is optimistic
- SDP is pessimistic
- LP gives accurate solution

method	Supply currents			Decaps			Delay	Vdrop
	(A)			(pF)			(ns)	(V)
LP	0	1	0	0	1.443	0	1	0.5
SDP	0	1	0	3	4	3	3.65	0.2
θ	0	1	0	0	1	0	0.703	0.628
LP	0.67	0	0.67	0.962	0	0.962	1	0.5
SDP	0.67	0	0.67	3	4	3	1.908	0.326
θ	0.67	0	0.67	0	1.333	0	0.703	0.628

Scalability Enhancement

- Reduce a P/G network to include only possible decoupling capacitor insertion nodes
- In the original P/G network

$$V = G^{-1}J$$

In the reduced P/G network

$$\widetilde{V}=\widetilde{G}^{\scriptscriptstyle{-1}}\widetilde{J}$$

- Apply unit supply current and compute node voltages
- Solve a linear equation system and find equivalent supply currents for the decap insertion nodes

Scalable Decap Insertion Linear Program

Input: RLC P/G network G, supply currents J

during time T, voltage bound αV_{dd}

Output: inserted decoupling capacitors

- 1. Select *n* decap insertion candidate nodes
- 2. Reduce *G* to include only the *n* decap insertion nodes
- 3. Apply linear program
- 4. Insert decoupling capacitors

Outline

- Background
- Problem Formulation
- Semi-definite Program
- Linear Program
- Scalability Enhancement
- Experiments
- Conclusion

Experiments

- 90nm industry design of 34K instances
- Cadence Fire&Ice extracts a power network of 65K resistors and 35K capacitors
- VerilogXL outputs supply currents of 5.613A in total
- T = 1ns, $\alpha = 0.2$
- 16 decap insertion candidate nodes
- 16 SPICE DC simulation, each takes 1.15 seconds

	Total decap (nF)	Min delay (ns)	Max Vdrop (V)	CPU runtime (s)
LP	30.002	1.008	0.199	0.001
SDP	55.892	2.644	0.101	0.034
θ	4.196	0.352	0.275	0.000

Summary

- We propose a compact modified nodal analysis formula for a P/G network
- We apply timing optimization techniques for supply voltage bound
- We propose a semi-definite program, which guarantees supply voltage bound for all supply currents
- We propose a linear program, which accurately bounds supply voltage for given supply currents
- We propose a P/G network reduction scheme for scalability enhancement

Thank you!