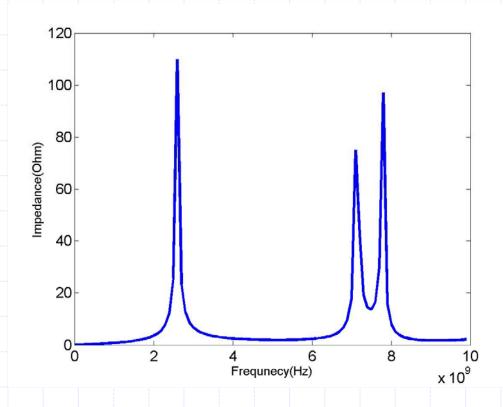
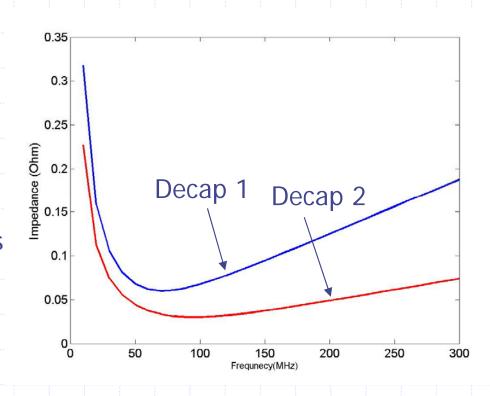
Noise Driven In Package Decoupling Capacitor Optimization for Power Integrity

Jun Chen and Lei He


Design Automation Laboratory, UCLA

Outline

- Introduction
- Electrical models
- Incremental impedance computation and noise computation
- Optimization results
- Conclusion


Power Integrity

- Noise in power delivery system (PDS)
 - IR drop
 - dI/dt drop
 - Resonance
- Challenges in advanced high-performance package
 - Hugh power consumption
 - Large current
 - High clock frequency
 - Large inductive effects and resonance
 - Large number of I/O's
 - SSN

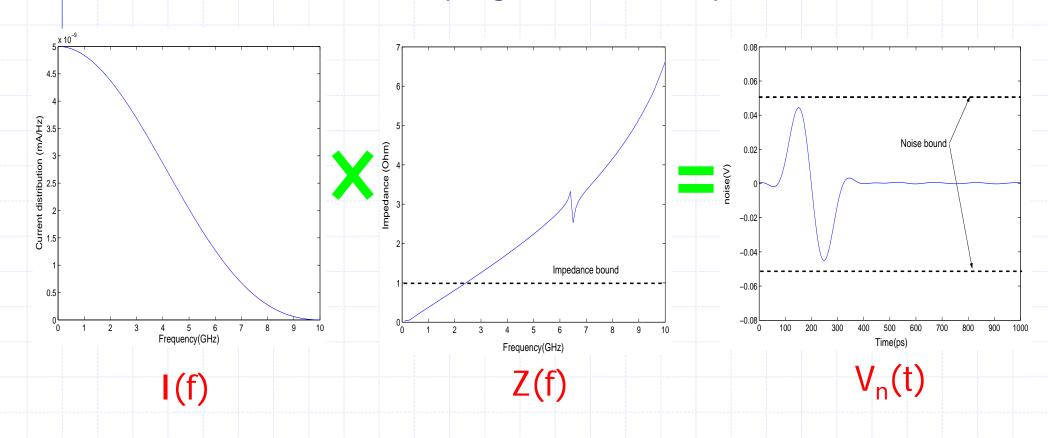
Decoupling capacitors

- Improve power integrity with decoupling capacitors
 - Low impedance path
 - Temporary current source
- In-Package decoupling capacitors for package
 - Discrete elements
 - Discrete ESC, ESL, ESR
 - Different effective frequencies
 - Different in costs

In-Package decoupling capacitor optimization problem

- Optimization problem for in-package decoupling capacitors
 - Given a package and chip I/Os
 - Find the best types and locations of decoupling capacitors
 - Such that the cost is minimized
 - Subject to SSN noise bound

Challenges


- Large number of I/O's and possible locations and types for decoupling capacitors
- Complex model with inductance
- Non-monotonic solution space
 - More decoupling capacitors do not always lead to better integrity
 - Locations closer to I/O does not always lead to better solutions
 - Hard to use mathematic programming for optimization

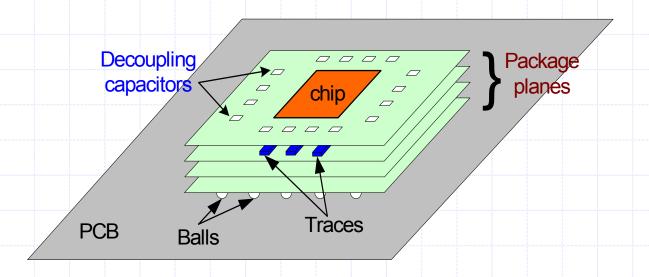
Existing Work

- Manual trial-and-error approaches
 - [Chen et al., ECTC '96]
 - [Yang et al., EPEP 2002]
- Automatic optimization
 - [Kamo et al., EPEP 2000], [Hattori et al., EPEP 2002]
 - Ignore ESL and ESR.
 - [Zheng et al., CICC 2003]
 - Use impedance as noise metric

Limitation of Impedance Metric

- Traditional noise bound can not capture noise accurately
- Will Lead to large over-design
- Difficult to consider coupling noise between ports

Our contributions

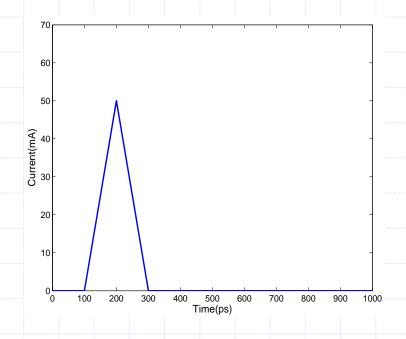

- Efficient noise model
 - Efficient incremental impedance computation
 - Time complexity: O(n²) vs O(n³)
 - Explicit time-domain noise metric
 - FFT
- Optimize both types and locations of decoupling capacitors based on explicit noise model
 - 3x smaller cost compared to impedance based approach
 - 10x speedup compared to admittance matrix inversion based method

Outline

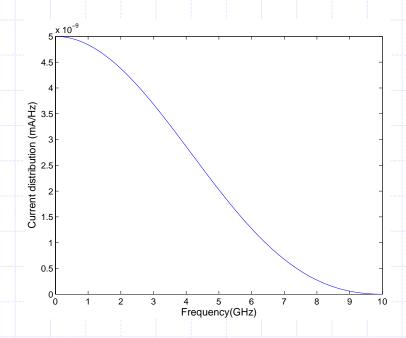
- Introduction
- Electrical models
- Incremental impedance computation and noise computation
- Optimization results
- Conclusion

Package model

- IC package
 - Multiple signal layers, power planes and ground planes
 - Planes stapled with Vias



Macromodel of PDS


- Given ports
 - Known I/O locations
 - Possible decoupling capacitor locations
- Pre-compute macromodel of PDS before optimization at sampling frequency f_k
 - Impedance matrix Z(f_k)
 - Detailed PEEC model + model order reduction
 - Field solver, measurement, ...
 - Not limited to package
 - May include VRM, PCB and on-chip P/G grid.

Model of Switching Current

- ♦ I/O cells
 - Pre-characterize time dependent switching current
 - Transform waveform into frequency domain

Frequency domain

Decoupling capacitor model

- Decoupling capacitor
 - ESC, ESR and ESL

Pre-compute frequency dependent impedance

$$Z_d(\omega) = \text{ESR} + \frac{1}{j\omega \text{ESC}} + j\omega \text{ESL}$$

Outline

- Introduction
- Electrical models
- Incremental impedance computation and noise computation
- Optimization results
- Conclusion

Existing Approach for Impedance **Updating**

- To compute the noise accurately, impedance at a large number of frequencies needs to be computed
- With pre-computed macromodel, [Zhao and Mandhana, EPEP20041

$$\mathbf{Z} = (\mathbf{Y} + \mathbf{Y}_d)^{-1}$$

- Disadvantages:
 - Involving inversion of large matrix at each frequency
 - O(n³) complexity
 - Compute all the Z_{ii} each iteration.
 - Better solution: update Z_{ii} when necessary

Incremental impedance updating with decoupling capacitor

- Update each Z_{ii} individually.
- Consider one decoupling capacitor each time.
- When adding one decoupling capacitor Z_d at port k

$$\hat{Z}_{ij} = Z_{ij} - \frac{Z_{ik}Z_{kj}}{Z_{kk} + Z_d}$$

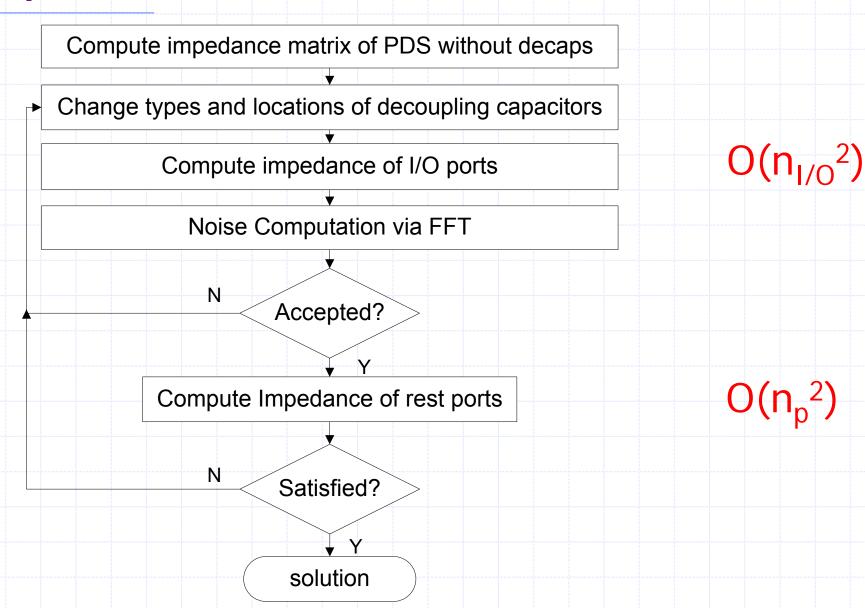
When removing one decoupling capacitor Z_d at port k

$$\hat{Z}_{ij} = Z_{ij} - rac{Z_{ik}Z_{kj}}{Z_{kk} - Z_d}$$

Complexity is O(1) for one port.

Time complexity

- For entire system, with one or a few decoupling capacitors changed
 - $O(n_p^2)$: n_p is the number of ports
 - Existing work: $O(n_p^3)$
- Suitable for trial-and-error or iterative methods
 - Only a few decoupling capacitors changed in each iteration
 - Able to compute only impedance of I/O ports before updating rest ports


Noise Calculation

- FFT methods
 - Impedance is computed at a large number of frequencies
 - Frequency components of noise from port j to port i

$$V_{ij}(f_k) = Z_{ij}(f_k) \bullet I_j(f_k)$$

- Worst case noise
 - Consider coupling noise from other ports
 - Superposition

Efficient General Iterative Optimization Flow

Outline

- Introduction
- Electrical models
- Incremental impedance computation and noise computation
- Optimization results
- Conclusion

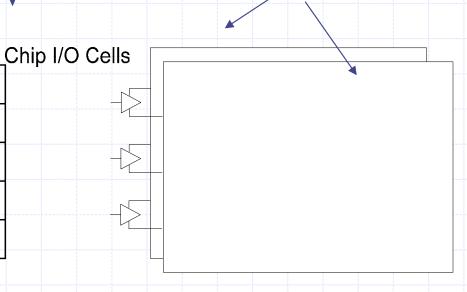
Algorithm

Simulated annealing with objective function

$$F(p_i, c_i) = \alpha \sum_{i \in IO} p_i + \beta \sum_j c_i$$

- p_i: Penalty function for noise violation
- c_i: cost of decoupling capacitor
- α, β: weights

Example


- 4 types of decoupling capacitors
- ♦ 3 I/O ports
 - Each connected to 10 I/O cells
- 90 possible locations for decoupling capacitors
- ♦ Total 93 ports

Worst case noise bound: 0.35V

Power planes

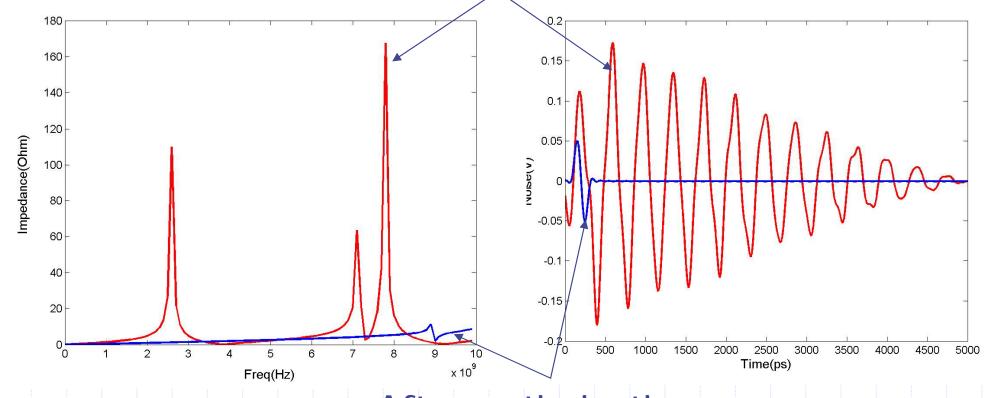
Type	1	2	3	4
ESC(nF)	50	100	50	100
$ESR(\Omega)$	0.06	0.06	0.03	0.03
ESL(pH)	100	100	40	40
Price	1	2	2	4

[Zheng et al., CICC 2003]

Experiment results: noise based

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	0	3	0	0	0	0	3
1	0	0	1	0	4	0	2	3	0	1
0	0	0	0	0	0	0	0	0	0	0

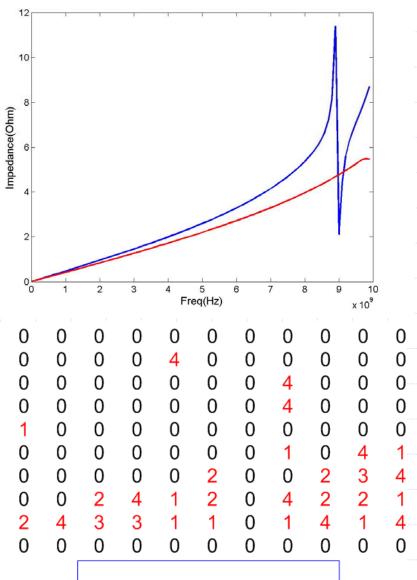
Туре	1	2	3	4
ESC(nF)	50	100	50	100
$ESR(\Omega)$	0.06	0.06	0.03	0.03
ESL(pH)	100	100	40	40
Price	1	2	2	4


Chip

port	1	2	3
before optimization	2.52V	2.49V	2.48V
after optimization	0.344V	0.343V	0.344V

Impedance and Noise

Before optimization



After optimization

Comparison: Impedance based approach

- ◆ Cost=72
 - 3X larger than noise based
- Impedance bound is not met but noise bound has already been met.
 - Overdesign

port	1	2	3	bound
Maximum Impedance	5.31Ω	5.59Ω	7.12Ω	0.7Ω
worst-case noise	0.256V	0.302V	0.284V	0.35V

Chip

Runtime Comparison

1	Noise based via incremental impedance computation
2	Noise based via admittance matrix inversion [Zhao et al, EPEP 2004]
3	Impedance based [Zheng et al, CICC 2003]

approach	1	2	3
ports	93	93	20
iterations	5881	5403	1920
runtime(s)	389.5	4156.1	2916
avg. runtime(s)	0.0662	0.7692	1.519

10x speedup compared to method based on admittance matrix inversion

Conclusion

- Proposed efficient noise computation model based on incremental impedance updating
- Proposed efficient noise driven decoupling capacitor optimization algorithm
 - 3X smaller cost
 - 10x speedup
- Demonstrated impedance based approach leads to large overdesign.