Floorplan and Power/Ground Network Co-Synthesis for Fast Design Convergence

Chen-Wei Liu¹² and Yao-Wen Chang²

¹Synopsys Taiwan Limited ²Department of Electrical Engineering National Taiwan University, Taipei Taiwan April 11, 2006

Outline

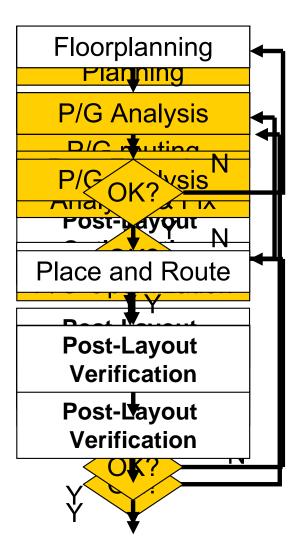
- . Introduction
- . Proposed Design Flow
- Floorplan and P/G NetworkCo-Synthesis Algorithm
- . Experimental Results

Outline

- . Introduction
- . Proposed Design Flow
- Floorplan and P/G NetworkCo-Synthesis Algorithm
- . Experimental Results

Introduction

- . As technology advances, the metal width decreases while the global wirelength increases. Also, supply voltage is decreasing and the power density keeps increasing.
- . The trends cause serious P/G network problems:
 - Voltage (IR) drop violation: serious IR-drop on a P/G network
 - Slow down clock rate and cause functional error


Power integrity Constraintsion: severe current density through a P/G IR-drop constraint: < 0.18V module 1.59V Power pad 1.8mA ver **EM** violation rap 2.5mA/µ **IR-drop violations** m **1.8V Power** 1.8mA/µm trunk 1.76V 1.73V 1.6V

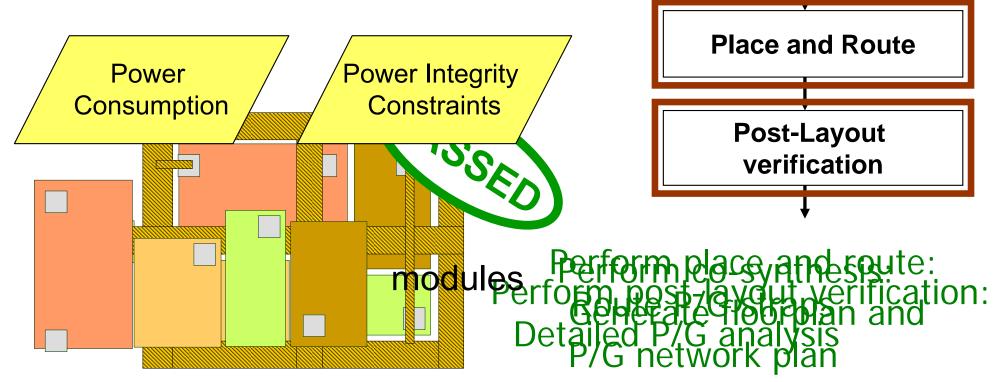
Power pin

Previous Work

- Power integrity issues are dealt at post-layout stage in the traditional design flow
 - P/G network topology determination
 - Singh, et al., ISPD-04
 - P/G wire sizing
 - Wang and Shadoska, DAC-03,
 - Chowdhury et al., DAC-89
- As the design complexity increases, it is necessary to handle P/G network problems earlier
 - Dharchoudhury et al., DAC-98
 - Pre-floorplan, post-floorplan and post-layout
 P/G networks analysis and fix
 - Yim et al., DAC-99
 - Post-floorplan P/G networks planning
 - Wu and Chang, DAC-04
 - Iterative tree-structured P/G networks verification and fix with floorplan optimization

DEG (1999A

Our Contributions


- Propose an automatic floorplan and P/G network co-synthesis method
- . Develop a sophisticated model for fast P/G analysis
 - Make the co-synthesis design flow possible
- Develop P/G network aware method to reduce the floorplan solution space
 - Improve the runtime by an average of 68%
- Integrate into a commercial design flow to develop a power integrity driven design flow
 - 2.56X faster than the generic Astro design flow

Outline

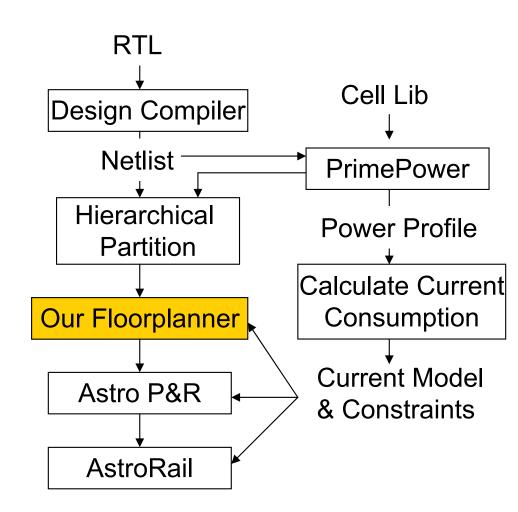
- . Introduction
- . Proposed Design Flow
- Floorplan and P/G NetworkCo-Synthesis Algorithm
- . Experimental Results

Proposed Design Flow

- Floorplan & P/G network co-synthesis problem formulation
 - Given a set of modules, power consumption data, and power integrity constraints
 - Generate a floorplan and a power integrity feasible global P/G network
- . Significantly improve the design convergence

Floorplan & P/G

Network Co-Synthesis

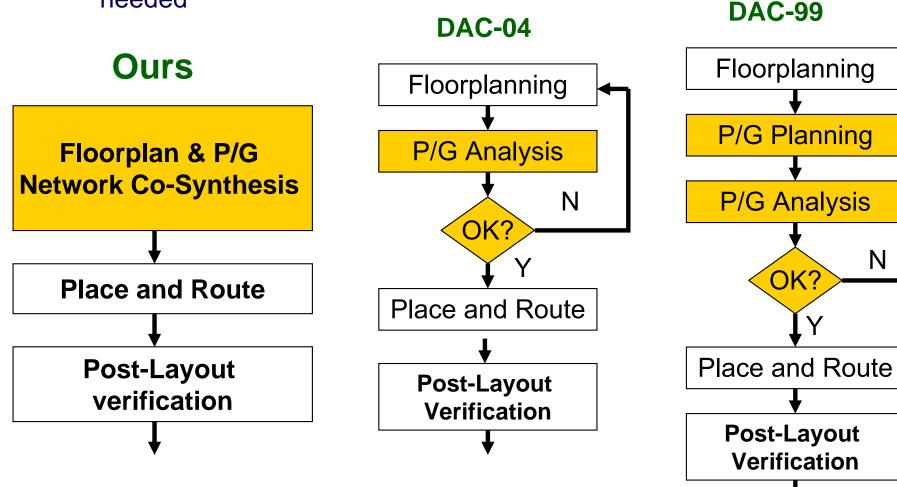

Implementation of the Design Flow

Data preparation

- . Power profile
 - Power consumption data of the modules generated by PrimePower
- Hierarchical circuit partition
 - Organize the design into hard modules and soft modules according to the hierarchy

Post-layout verification

- . AstroRail
 - Static cell-level P/G analysis



Flow Comparison

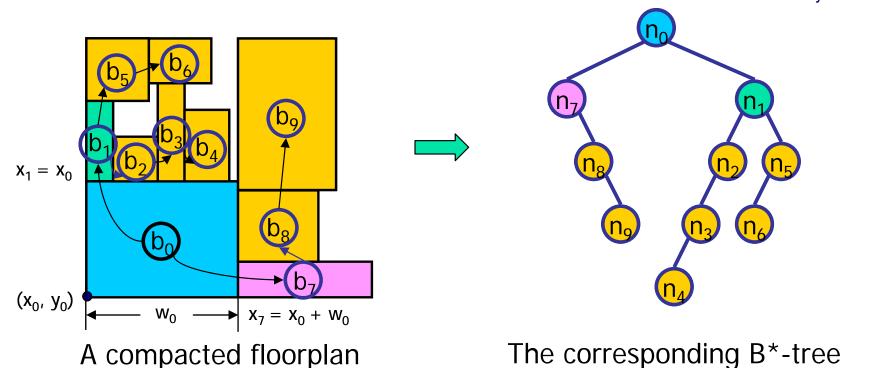
- Previous work: Only move the iterative fix to an earlier stage
- Our work: Further combine P/G planning into floorplanning
 - Thousands of floorplans are evaluated in a second

A very efficient, yet sufficiently accurate P/G network analysis method is

needed

Ν

Outline


- . Introduction
- . Proposed Design Flow
- Floorplan and P/G NetworkCo-Synthesis Algorithm
- . Experimental Results

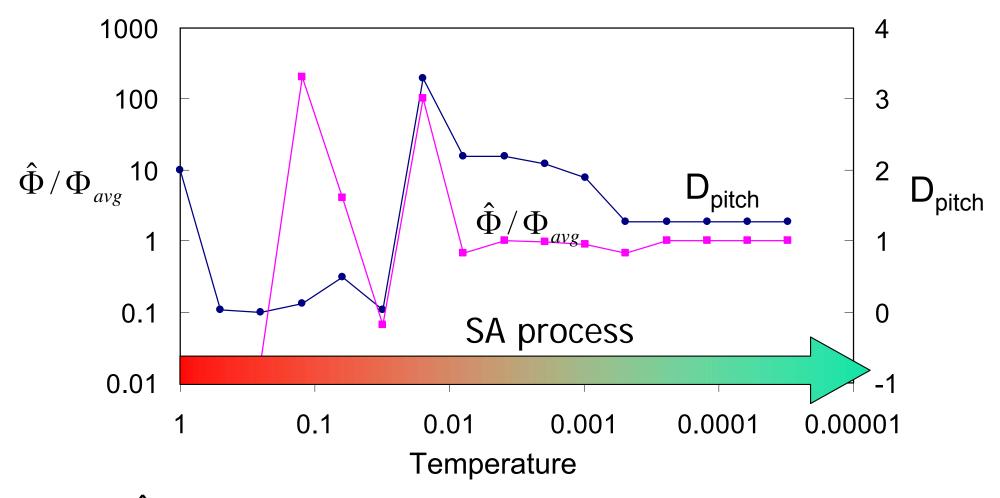
Overview of the Co-Synthesis Algorithm

- B*-tree Floorplan Representation and Simulated Annealing (SA) Algorithm
- . P/G network analysis
 - Global P/G Network Construction
 - P/G Network Modeling
 - P/G Network Evaluation
- Solution Space Reduction Technique (SSR)

B*-tree: Compacted Floorplan Representation

- Chang et al., "B*-tree: A new representation for non-slicing floorplans," DAC-2k.
 - Given a B*-tree, a legal floorplan can be obtained in amortized linear time
 - Root: The most left-bottom module
 - Left child: the lowest, adjacent block on the right $(x_i = x_i + w_i)$
 - Right child: the first block above, with the same x-coordinate $(x_i = x_i)$

Cost Function for Simulated Anealing


. Cost function:

Wirelength Area P/G cost P/G Density $\Psi = \alpha \cdot W + \beta \cdot A + \gamma \cdot \Phi + \omega \cdot \frac{A}{D_{pitch}^2},$ W: wirelength

- . A: area
- . Ф: P/G network cost
- . D_{pitch}: pitch of P/G network
 - _ Update by multiplying $\,\hat{\Phi}/\Phi_{avg}$
 - $-\Phi_{avg}$: Average P/G network cost at a temperature
 - $\hat{\Phi}$: $0 < \hat{\Phi} < 1$, a budget factor for adjusting the density of P/G networks
 - Small $\hat{\Phi}$ for low P/G density and large one for high P/G density

Pitch Updating: An Example

- . At the beginning of SA, D_{pitch} = 2 and $~\hat{\Phi}=0.02$
- . During SA process, $D_{\it pitch} \Leftarrow \hat{\Phi}/\Phi_{\it avg} \times D_{\it pitch}$

 $\hat{\Phi}/\Phi_{avg}$ converges to 1 while temperature cools down

P/G Network Cost

Ф: P/G network cost

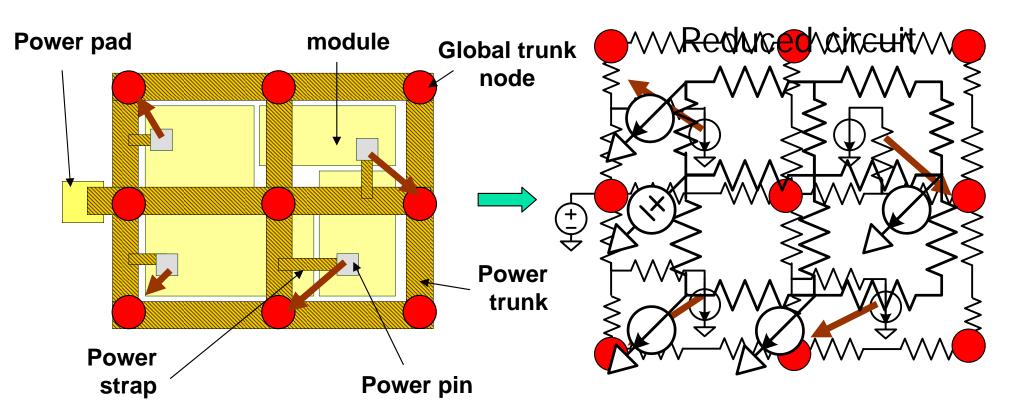
$$\Phi = \theta \cdot \frac{|B_{em}|}{|B|} + (1 - \theta) \cdot \frac{\sum_{\forall p_{vi} \in P_v} v_{p_{vi}}}{\sum_{\forall P_v \in P} V_{\lim, pi}}, \quad 0 < \theta < 1$$

- . B_{em} : set of branches violating electromigration constraints
- B : total branches of the P/G mesh
- . v_{pvi} : amount of the violation at the pin p_{vi}
- . P: set of all P/G pins
- . P_{v} : set of violating P/G pins
- . $V_{lim,pi}$: IR-drop constraint of the P/G pin p_i

P/G Network Construction

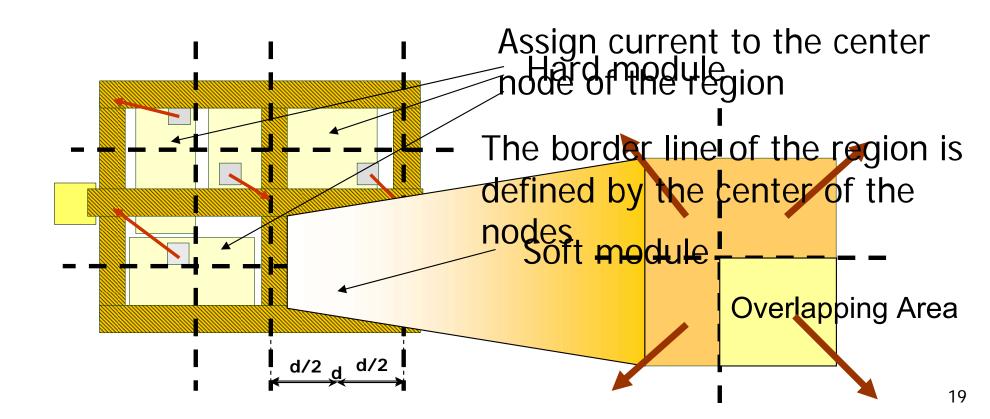
- . For each floorplan, we construct a uniform global P/G network according to $D_{\it pitch}$
- . The number of trunks is defined by $round[width/D_{pitch}]+1$ and $round[height/D_{pitch}]+1$

2X4 uniform PFComptlerork is constructed

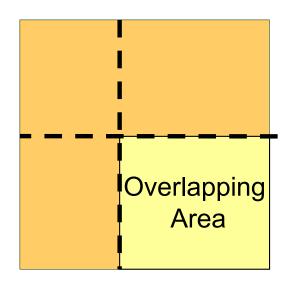


Calculate the properties of the control of the cont

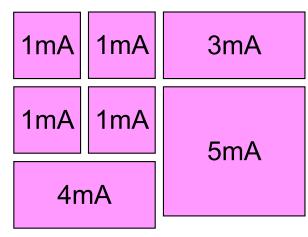
P/G Network Modeling


Apply static analysis for fast P/G network evaluation

- Use resistive P/G model
- . Model a P/G pin as a current source
 - Current value: maximum current drawn from a P/G pin
- Reduce circuit size
 - Connect each current source to the nearest global trunk node


Macro Current Modeling

- . Divide the floorplan into regions
- . For Hard macros
 - Connect each P/G pins to the nearest node (center of the region)
- . For Soft macros
 - Collect the largest current drawn by standard cells in the overlapping area of the region and the soft macro

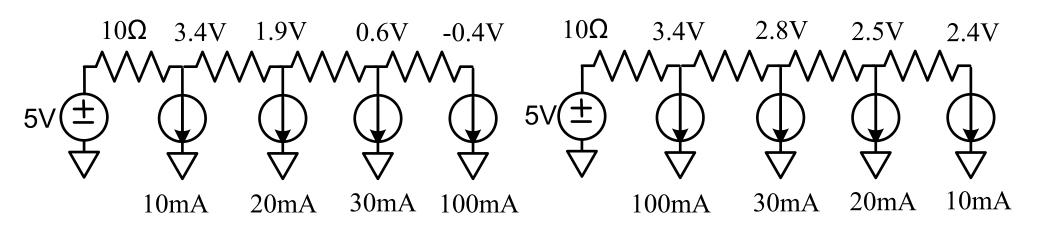


Soft Macro Modeling

- Derive the largest current drawn by standard cells of the overlapping area
 - Maximize the current of the overlapping area
 - Constraint: total stdcell area < the overlapping area
 - The problem is known as 0-1 Knapsack Problem (NP-complete)
- Approximate it by Fractional Knapsack Algorithm
 - Assume standard cells can be broken into arbitrary smaller pieces
 - Rank cells by current to area ratio
 - Apply a greedy algorithm (complexity O(n lg n))

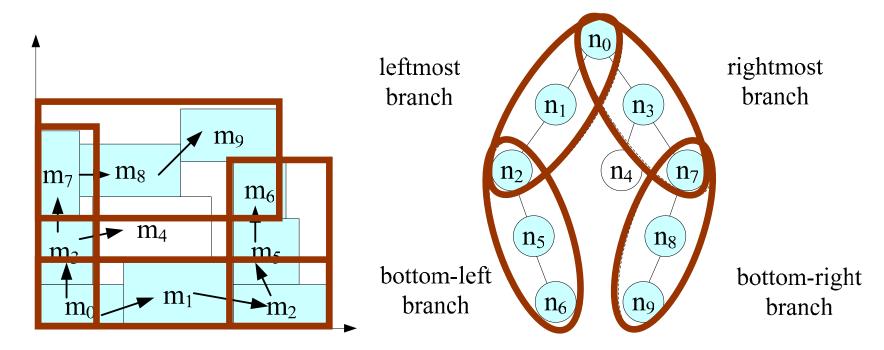
Standard cells of the soft module

Evaluation of P/G Network

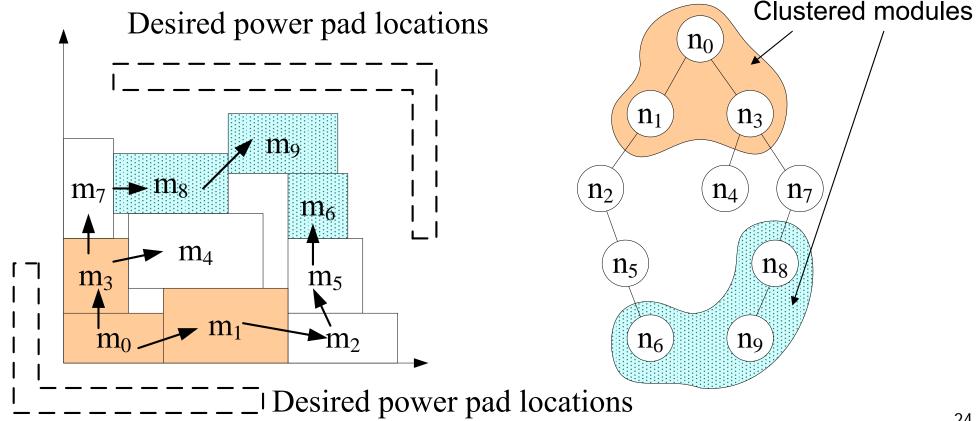

. The static analysis of a P/G network is formulated into the following modified nodal analysis (MNA) formula:

Gx = i

- G: conductance matrix (sparse positive definite)
- x : vector of node voltages
- i : vector of current and voltage sources
- Dimensions of G, i and x are equal to the number of nodes in the P/G network
- . Solve the linear equation
 - Apply Preconditioned Conjugated Gradient (PCG) method
 - The time complexity is linear


Solution Space Reduction

- . The IR-drop of a P/G pin is proportional to the effective resistance between the P/G pin and the P/G pad
 - The closer the P/G pin is placed to the P/G pad, the smaller the IRdrop
- . A technique to reduce the solution space
 - Place the modules consuming larger current (power-hungry modules) near the boundary of the floorplan
 - Place power pads near them


B*tree Boundary Properties

- . Bottom-boundary condition
 - Bottom boundary modules are related to the leftmost branch
- Left-boundary condition
 - Left boundary modules are related to the rightmost branch
- . Right-boundary condition
 - Right boundary module are related to the bottom-left branch
- . Top-boundary condition
 - Top boundary modules are related to the bottom-right branch

Power-Hungry Modules Handling

- **Power-Hungry Modules**
 - Are clustered and restricted to satisfy the boundary properties during B*-tree perturbation
 - P/G pads are placed near these modules

Outline

- . Introduction
- . Proposed Design Flow
- Floorplan and P/G NetworkCo-Synthesis Algorithm
- . Experimental Results

Experimental Settings

- . Implementation
 - Use GNU C++
- . Platform
 - On Sun Blade 2000 with single 1GHz CPU and 8G memory
- . OpenRISC
 - Open source 32bit RISC micro processor (OPENCORE)
 - UMC 0.18 technology
 - Compare to the Astro design flow with IR-drop driven placement (manually and iteratively fix P/G network faults)
- . MCNC benchmark
 - TSMC 0.25 technology
 - Given large power consumption and small power budget (low P/G network density and only a pair of P/G pads)
 - In order to test the robustness of our floorplanner

Results on OpenRISC1200

Improvements in runtime and the max IR-drop

OpenRISC1200	*Astro Flow	*Astro w/ IR-drop Driven Placement	Our Flow	Ours vs. Astro w/IR-drop
Die Area (mm²)	3.86	3.86	3.33	15.9%
Utilization (%)	62	62	72	13.9%
Wirelength (µm)	1655463	1539125	154017 2	-0.1%
Avg. Delay (ns)	8.62	8.54	8.55	-0.1%
Max IR-drop (mv)	80.18	78.20	55.14	41.8
CPU Runtime (s)	505	346	135	2.56X
Iterations	4	3	1	-

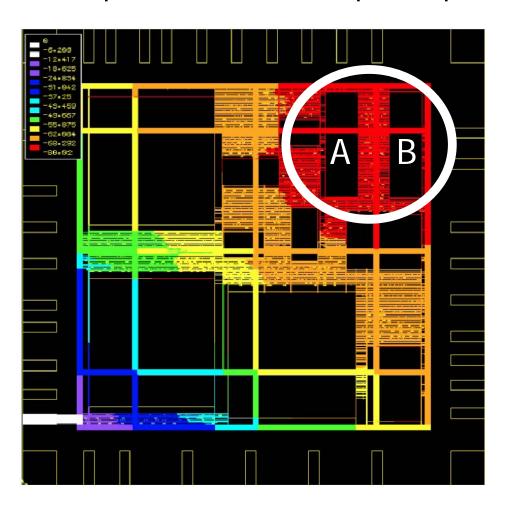
Small overhead

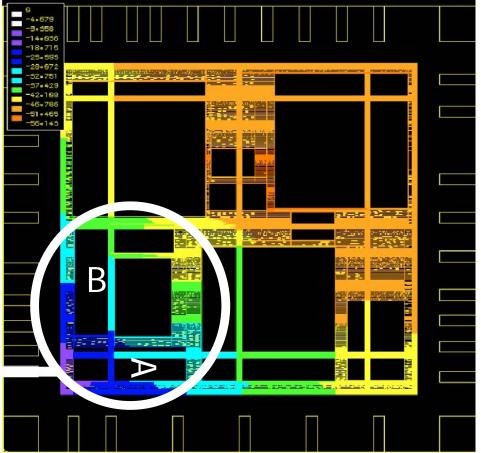
Better IR-drop

Speed

improvement

^{*}Need iterative and manual P/G network fix


Resulting Voltage Map


Astro design flow

Power-hungry blocks (register file A&B) are placed far from the power pad

Our design flow

Power-hungry blocks are placed beside the power pad

Results on MCNC Benchmark

Compared with plain B*-tree floorplanner, our floorplanner solves all the violations with small overhead

Circuit	Plain B*-tree Floorplanner				Ours Without SSR			
	WL	Area	#Vio	CPU	WL	Area	#Vio.	CPU
apte	435.5	48.21	6	1.1	440.4	49.8	0	165.2
xerox	387.6	20.42	39	3.3	401.5	21.3	0	122.3
Нр	155.5	9.56	38	3.2	187.1	11.2	0	58.2
ami33	58.4	1.31	99	8.8	69.0	1.4	0	43.4
ami49	864.6	39.86	195	42.2	832.8	39.8	0	1412
comp.	0.98	0.97	195	0.033	1	1	0	1

Results of Solution Space Reduction

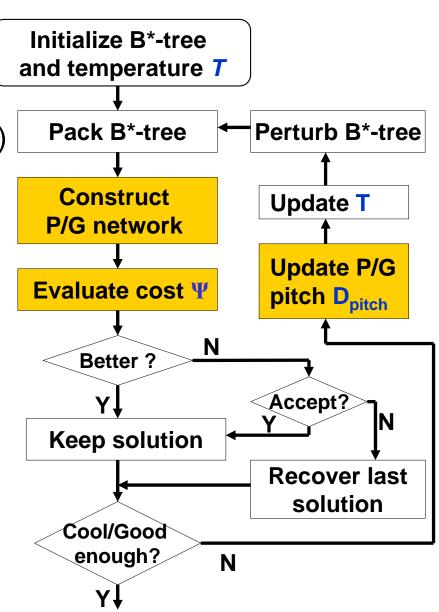
The solution space reduction technique speeds up floorplanning 3x with similar quality

Circuit	Ours With SSR				Ours without SSR			
	WL	Area	#Vio	CPU	WL	Area	#Vio	CPU
apte	452.1	48.8	0	43.2	440.4	49.8	0	165.2
xerox	410.2	22.4	0	47.3	401.5	21.3	0	122.3
Нр	189.5	11.7	0	24.0	187.1	11.2	0	58.2
ami33	73.2	1.2	0	20.2	69.0	1.4	0	43.4
ami49	779.9	44.2	0	450.0	832.8	39.8	0	1412
comp.	0.99	1.04	0	0.32	1	1	0	1

Conclusions

- Have proposed a practical design flow compatible with commercial CAD design flow
- . Have proposed an algorithm and a modeling technique to make floorplan and P/G network co-synthesis possible
- . Have shown the solution space reduction method to speed up the co-synthesis algorithm
- . Have shown the efficiency and effectiveness of the proposed power integrity driven design flow and applied on a real design

Thank You


Simulate Annealing Process

. Non-zero probability for up-hill climbing: $\begin{pmatrix} -\Delta\Psi \end{pmatrix}$

 $p = \min \left(1, e^{-\frac{\Delta \Psi}{T}} \right)$

. Perturbations (neighboring solutions)

- Op1: Rotate a block
- Op2: Move a node/block to another place
- Op3: Swap two nodes/blocks
- Op4: Resize a soft block
- The cost function Ψ is based on the floorplan cost and P/G network cost
- T is decreased every n cycles, where n is proportional to the number of blocks

