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Outline
• Motivation

– Challenge in probabilistic optimization considering 
process variations

• Pruning Probability
– Metric for comparison of potential solutions 

• Computing the Pruning Probability
• Application

– Dual-Vth assignment considering process variations

• Results
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Motivation
• Many VLSI CAD optimization problems rely 

on comparison of potential solutions
– To identify the solution with best quality, or to 

identify a subset of potentially good solutions

• Any potential solution Si has a corresponding 
timing ri & cost ci:
– e.g., A solution to the gate-sizing problem has:

• Timing: Delay of the circuit 
• Cost: Overall sizes of the gates
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Motivation

• Process variations randomize the timing and 
cost associated with a potential solution
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• A good solution is the one with better timing 
and cost
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Pruning Probability
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• Let       and

fR,C : joint probability density function (jpdf) of 
random variables R and C
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Computing the Pruning Probability:
Challenges

• Accuracy
– Might not have an analytical expression for fR,C

– Might require numerical methods to compute the 
probability

• Fast computation 
– Necessary in an optimization framework
– Makes the use of numerical techniques such as 

Monte Carlo simulation impractical

∫ ∫
∞ ∞

=≥≥
0 0 , ),()0&0( drdccrfCRP CR



ISPD20067

• Based on analytical approximation of the jpdf
( fR,C )
– With a well studied jpdf
– For which computing the probability integral is 

analytically possible

• Using Conditional Monte Carlo simulation 
– Bound-based numerical evaluation of the probability
– Potentially much faster than Monte Carlo

Computing the Pruning Probability:
Methods
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Computing the Pruning Probability: 
Approximating jpdf by Moment Matching

R and C X and Y

Match the first few 
terms (moments)

Characteristic
Function 

ΦR,C ΦX,Y 

fR,C fX,Y

• Approximate R,C with new 
random variables X,Y where the 
type of jpdf of X,Y is known

• Compute the first few terms 
of the characteristic functions 
(Fourier transform) of the two 
jpdfs (i.e., moments)

• Match the first few moments 
and determine the parameters 
of fX,Y

• Compute the pruning 
probability for X and Y

Characteristic
Function 

Calculate 
Probability for fX,Y
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Computing the Pruning Probability: 
Approximating jpdf by Moment Matching
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R and C X and Y

Match the first few 
terms (moments)

Characteristic
Function 

ΦR,C ΦX,Y 

fR,C fX,Y

Characteristic
Function 

Calculate 
Probability for fX,Y
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Computing the Pruning Probability: 
Approximating jpdf by Moment Matching

• Challenges:
– Very few bivariate jpdfs have closed form expressions 

for their moments
– Integration of very few known jpdfs over the quadrant 

are analytically possible

• Will study the example of bivariate Gaussian 
approximation given polynomial representation 
of R and C
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Example: Bivariate Gaussian jpdf for Polynomials
Polynomial representation of R and C 

under process variations

• Can represent R and C as polynomials
– By doing Taylor Series expansion of the R and C expressions in 

terms of random variables representing the varying parameters 
due to process variations   (e.g., Leff, Tox, etc.)

– Higher accuracy needs higher order of expansion
– These r.v.s can be assumed to be independent

• Using Principal Component Analysis (PCA)

,...),(1 oxeff TLfR =
,...),( 212 XXPolyC =
,...),( 211 XXPolyR =

,...),(2 oxeff TLfC =
PCA and Taylor 
Series Expansion
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Example: Bivariate Gaussian jpdf for Polynomials

• Assuming {X1,X2,…} are independent r.v.s with Gaussian 
density functions
– The jpdf (fR,C) is approximated to be bivariate Gaussian 
– Using linear approximation of R and C
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matching 
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Example: Bivariate Gaussian jpdf for Polynomials

][1 RE=µ
][ 22

1
2

1 RE=+ µσ][2 CE=µ
][ 22

2
2

2 CE=+ µσ

][RCEyxyx =+ µµσρσ

2
2

2
22

21

2211
2

1

2
11

22
21

,

)())((2)(

]
)1(2

exp[
12

1

σ
µ

σσ
µµρ

σ
µ

ρρσπσ

−
+

−−
−

−
=

−
−

−
=

xxxxz

zf YX

R and C X and Y

Match the first few 
terms (moments)

Characteristic
Function 

ΦR,C ΦX,Y 

fR,C fX,Y

Characteristic
Function 

Calculate 

Probability for fX,Y

∑+≈= ii XrrXXPolyR 0211 ,...),(
∑+≈= ii XccXXPolyC 0212 ,...),(

Analytical expression for 
probability integral of bivariate
Gaussian jpdf is available 
(Hermite Polynomials)*

*[Vasicek 1998]
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Computing the Pruning Probability: 
Conditional Monte Carlo (CMC)

• CMC is similar to MC but:
– Uses simple bounds that can evaluate the sign of R 

and C for most of the MC samples
• Evaluation of simple bounds are much more efficient than 

polynomial expressions that are potentially of high order

– Only in the cases that the simple bounds can not 
predict the sign of R and C, the complicated 
polynomial expressions are evaluated

∫ ∫
∞ ∞

=≥≥
0 0 , ),()0&0( drdccrfCRP CR



ISPD200615
Pruning Probability

Computing the Pruning Probability: 
Conditional Monte Carlo (CMC)

Compute Simple
Bounds for R and C:

ULUL CCRR ,,,

total
CR
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Based on pdf of
the Xi variables
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• Accurately predicts the probability value

• Speedup is due to the following intuition:
- Evaluation of simple bounds are much faster than 
high-order polynomials
- If the bounds are accurate, they predict the sign of 
the polynomials very frequently resulting in 
significant speedup

Computing the Pruning Probability: 
Conditional Monte Carlo (CMC)
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Example: Computing Bounds on Polynomials

• Bernstein coefficients define convex hull for any polynomial*
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Example: Computing Bounds on Polynomials

• Simple hyper-plane lower-bounds are defined for each 
polynomial from its Bernstein coefficients*

*[Garloff, Jansson, Smith 2003]
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Application:
Dual-Vth Assignment for Leakage 

Optimization Under Process Variations
VthL

VthH

VthL

VthH

VthL
VthL

VthH

VthH

VthH
VthL

VthL

• Assignment of either high or low threshold voltage to gates in 
a circuit (represented as nodes in a graph)

- Higher threshold (slow), lower threshold (leaky)
• Under process variations the goal is:

-To minimize expected value of overall leakage (E[L])
-Subject to bounding the maximum probability of violating a Timing 
Constraint (Tcons) at the Primary Output
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• Each solution:
- Overall leakage at the node’s subtree:

- Arrival time of the node’s subtree: Approximated as a linear 
combination of parameters
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• Dynamic programming based formulation 
- Topological traversal from PIs to POs
- Solution at a node:

-Vth assignment to sub-tree rooted at the node
- Solution set at each node:

-Generated by combining solutions of a node’s children + node’s Vth possibilities
-Pareto-optimal set identified & stored*

Dual-Vth Assignment for Leakage 
Optimization Under Process Variations

VthL

VthH

VthL

VthH

VthL
VthL

Using the Pruning Probability

*[Davoodi, Srivastava ISLPED05]
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%Error in Estimation of Pruning Probability

For 2600 solution pairs from 
the dual-Vth framework
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Speedup in Computing the Pruning 
Probability
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Comparing Quality of Solution 
in Dual-Vth Assignment

Run Time (sec) 
E[I] in pA

Maximum allowed risk (probability) for 
violating the timing constraint: 0.3
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Conclusions

• Introduced pruning probability as metric to 
compare potential solutions in a variability-
driven optimization framework 

• Illustrated computing of pruning probability:
– Using efficient jpdf approximation
– Using accurate Conditional Monte Carlo 

simulation
– Both methods significantly faster the MC
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