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 Many VLSI CAD optimization problems rely
on comparison of potential solutions

— To identify the solution with best quality, or to
Identify a subset of potentially good solutions

* Any potential solution Si has a corresponding
timing ri & cost Ci:
— e.g., A solution to the gate-sizing problem has:
e Timing: Delay of the circuit
o Cost: Overall sizes of the gates
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Motivation

* A good solution Is the one with better timing

and cost
S; superior S, & I, <1, &¢C, <C,

» Process variations randomize the timing and
cost assoclated with a potential solution

S; superior S, & P(R, <R, &C, <C,)~1

Source: Intel
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Pruning Probability

S; superior S; < P(R <R, &C,<C/)=1

e LetC=C,-C, and R=R, -R,
P(R20&C>0)= [ f,.(r,c)drdc

frc : joint probability density function (jpdf) of
random variables R and C
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Computing the Pruning Probability:

Challenges

P(R20&C=20)="[ f, (r,c)drdc
e Accuracy

— Might not have an analytical expression for frec

— Might require numerical methods to compute the
probability

e Fast computation
— Necessary in an optimization framework

— Makes the use of numerical techniques such as
Monte Carlo simulation impractical
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Computing the Pruning Probability:

Methods

e Based on analytical approximation of the jpdf
(fre)
— With a well studied jpdf

— For which computing the probability integral is
analytically possible

e Using Conditional Monte Carlo simulation
— Bound-based numerical evaluation of the probability
— Potentially much faster than Monte Carlo
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Computing the Pruning Probability:

Approximating jpdf by Moment Matching

‘ R and C ‘ ‘ X andY ‘ e Approximate R,C with new
random variables X,Y where the
l frc l fxy type of jpdf of X,Y is known
Characteristic Characteristic « Compute the first few terms
Function Function of the characteristic functions

(Fourier transform) of the two
ECDR c  Dxy jpdfs (i.e., moments)

» Match the first few moments

Match the first few and determine the parameters
terms (moments) of fxy
| .
Calculat orobabily for X and
. Probability for fx,y P y
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Computing the Pruning Probability:
Approximating jpdf by Moment Matching

Characteristic Characteristic |
Function Function @, (t,.t,) = [[e*=f, (X, y)dxdy

N\ . . iy
(DR,C CDx,Y =1+itm, +it,m, —émzo — .

Match the first few o .
terms (moments) m; = ”X y' f (X, y)dxdy = E[X'Y ']

|

Calculate

Probability for fx,y
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Computing the Pruning Probability:

Approximating jpdf by Moment Matching

e Challenges:

— Very few bivariate jpdfs have closed form expressions
for their moments

— Integration of very few known jpdfs over the guadrant
are analytically possible

o Will study the example of bivariate Gaussian
approximation given polynomial representation
of Rand C
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Example: Bivariate Gaussian jpdf for Polynomials

Polynomial representation of R and C

under process variations

e Can represent R and C as polynomials

— By doing Taylor Series expansion of the R and C expressions in
terms of random variables representing the varying parameters
due to process variations (e.g., Leff, Tox, etc.)

— Higher accuracy needs higher order of expansion

— These r.v.s can be assumed to be independent
» Using Principal Component Analysis (PCA)

R=f,(L,,T. )
C="f(L,,T. )

— R = Poly, (X,, X, ...)
C =Poly,(X,, X, ,...
PCA and Taylor Vo (X1 Xar--)

Series Expansion
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Example: Bivariate Gaussian jpdf for Polynomials

R =Poly,(X,, X,,.) =, + 2 X, C=Poly,(X,,X,,..) ¢, + ¥ ¢ X,

e Assuming {Xz1,X2,...} are independent r.v.s with Gaussian
density functions

— The jpdf (frc) is approximated to be bivariate Gaussian
— Using linear approximation of R and C

A — L exp[— . ]

" 270,0,41- PP 2(1-p%)

=) 2p( =) (% = 11) | (X = 18)°
0-12 0,0, 0'22

 Moments of bivariate Gaussian jpdf are related to

12

My, 01,05, 0
— Need to specify the values of these parameters using moment
matching
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1
fX,Y . > exp[-
2no,0,\1-p

VA
2007 R = Poly, (X, X,,..) = I, + 2B X,
C= Polyz(Xl, XZ,...) =~ Co +Zcixi

- (Xl _/ul)z N 2,0()9 _:u1)(X2 _/uz) n (Xz _/uz)z

Z e L/
o, 0,0, RN e T
\ ,”,”
Rand C ‘ ‘ X and Y ‘ \ . Pt
\ ol oy »
— 2 2
frc v =E[C] "o+ u’=E[RY]
2 2 2
Characteristic Characteristic H = E[R] o, +U, = E[C ]
Function Function
poo,+ uu, =E[RC]
——

Match the first few
terms (moments)

Analytical expression for
/ probability integral of bivariate
Gaussian jpdf is available
v (Hermite Polynomials)*
Calculate /
Probability for fx,Y‘

*[Vasicek 1998]
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Computing the Pruning Probability:

Conditional Monte Carlo (CMC)

P(R20&C>0)=| [ f,(r,c)drdc

e CMC issimilar to MC but:

— Uses simple bounds that can evaluate the sign of R
and C for most of the MC samples
 Evaluation of simple bounds are much more efficient than
polynomial expressions that are potentially of high order
— Only In the cases that the simple bounds can not
predict the sign of R and C, the complicated
polynomial expressions are evaluated
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Computing the Pruning Probability:

Conditional Monte Carlo (CMC)

Compute Simple
Bounds for R and C:

RL,RU,CL,CU

—>| Based on pdf of [*

Can NOT
predict sign of
R and C from
its bounds

Generate Samples

the Xi variables

3

Evaluate
RL, RU ,CL,CU

Determine if R>0 & C>0
by evaluating R and C

Can predict
sign of R and
C from its

bounds

Determine if R>0 & C>0

from the bounds

N g

Update count I

of # R &C>0

Pruning Probability
#(R>0,C>0)

#total
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Computing the Pruning Probability:

Conditional Monte Carlo (CMC)

o Accurately predicts the probability value

e Speedup Is due to the following intuition:
- Evaluation of simple bounds are much faster than
high-order polynomials
- If the bounds are accurate, they predict the sign of
the polynomials very frequently resulting in
significant speedup
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POIY (X, X,) = D D@ X %, X"

L=0 1,=0
* Bernstein coefficients define convex hull for any polynomial*
_ ] Ci Y (i)
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Example: Computing Bounds on Polynomials

e Simple hyper-plane lower-bounds are defined for each
polynomial from its Bernstein coefficients*

o6k

P(x)=1+0.5x—0.33x°+0.25x"
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Application:

Dual-Vth Assignment for Leakage
Optimization Under Process Variations

VthL

"“VthL

VthH

* Assignment of either high or low threshold voltage to gates In

a circuit (represented as nodes in a graph)
- Higher threshold (slow), lower threshold (leaky)

» Under process variations the goal Is:
-To minimize expected value of overall leakage (E[L])
-Subject to bounding the maximum probability of violating a Timing

Constraint (Tcons) at the Primary Output
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Dual-Vth Assignment for Leakage
Optimization Under Process Variations

e Dynamic programming based formulation
- Topological traversal from Pls to POs

- Solution at a node:
-Vth assignment to sub-tree rooted at the node

i Using the Pruning Probability B’s children + node’s Vth possibilities
-Pareto-optimal set identified & stored™
 Each solution:
- Overall leakage at the node’s subtree: L, =1," + > LX, + > 3 1LYX X, +...
- Arrival time of the node’s subtree: Approximated as a linear

20 combination of parameters . - 1SPD2006
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Normalized Frequency

Percentage Error

For 2600 solution pairs from

the dual-Vth framework
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Speedup In Computing the Pruning

Probability

Normalized Frequency
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Comparing Quality of Solution
in Dual-Vth Assignment

Lrons | Worst-Case Deterministic jpdf Appr. Conditional MC
(nsec) | ElI Py(T) t K v
C432 33.0 | 10634 | 0.11 10 0.25
C499 17.5 | 14285 | 0.14 20 0.14
C880 32.0 | 16650 | 0.11 12 0.30
C1355 | I8.0 | L7182 | 0.08 10 0.09
C1008 | 29.0 | 13768 | 0.13 37 0.16
C3540 | 42.0 [ 38561 | 0.18 123 0.22
Ch315 | 31.0 | 42032 | 0.12 160 0.16
C6288 | 110.0 | 45343 | 0.10 1131 0.10
alu2 80 | 13340 | 0.03 13 0.03
alud 12.0 | 23317 | 0.06 65 0.07
dalu 27.0 | 36812 | 0.12 63 0.17
Ave. 0.12 0.16
Run Time (sec)
Sl inpA Maximum allowed risk (probability) for
violating the timing constraint: 0.3
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Conclusions

 Introduced pruning probability as metric to
compare potential solutions in a variability-
driven optimization framework

e |llustrated computing of pruning probability:
— Using efficient jpdf approximation

— Using accurate Conditional Monte Carlo
simulation

— Both methods significantly faster the MC
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