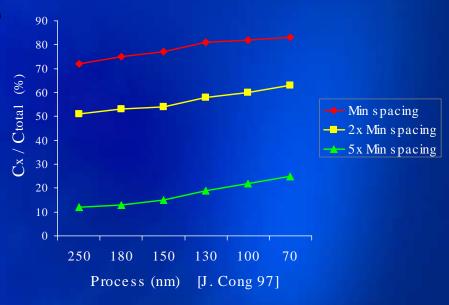
Shield Count Minimization in Congested Regions

Prashant Saxena Satyanarayan Gupta

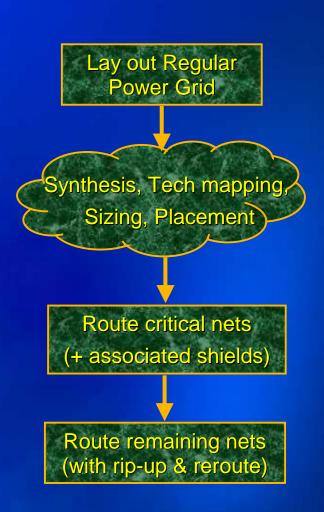
Intel Corporation


International Symposium on Physical Design San Diego, CA

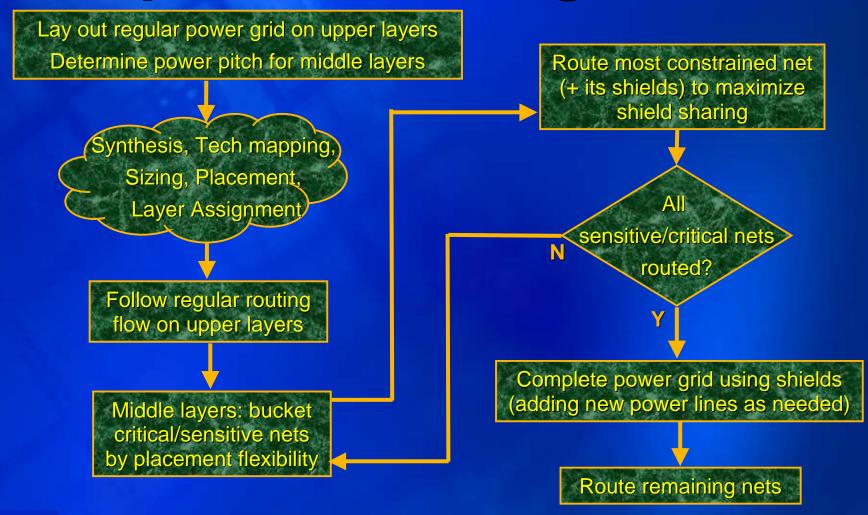
April 9, 2002

Motivation

- Switching xcap worsening with process scaling
 - Noise failures
 - Widened timing windows => convergence problems
- Usual fix: Shield all sensitive signals!
- # sensitive nets exploding
 - Die-size impact (most designs wire-limited)
 - TTM impact if a block doesn't fit
 - Shield count known very late



Traditional Routing Flows


The view from 30,000 feet...

- Pre-routed power grid not disturbed during signal routing
- Global routing assigns nets to GRCs
- Little effort at shield sharing

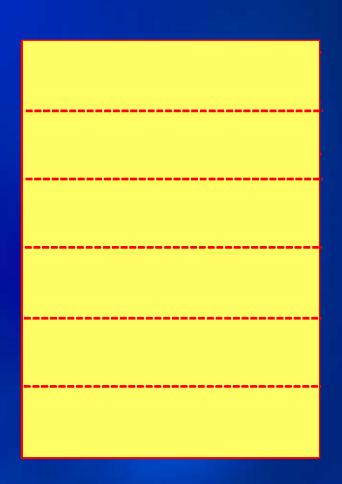
Question these assumptions...
...but be very careful!

Proposed Routing Flow

Constraints on Proposed Flow

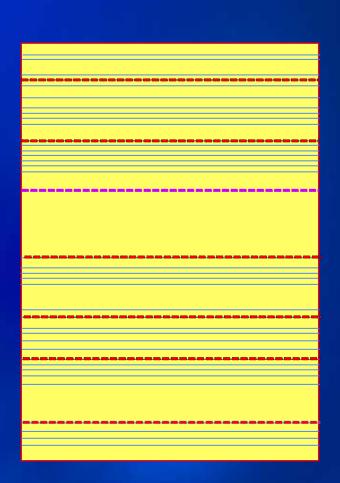
- Must <u>not</u> compromise early analysis of power grid
 - Upper layers: Wide power lines => can't be "extracted" from signal shields
 - Middle layers: Can model grid "virtually" using power pitch
- Applicable to middle layers only
 - Power grid here often fine-grained
 - Power line matching not essential across adj. blocks
 - Current between adj. blocks flows largely through upper layers even with matched grids
- Use only in congested regions with many xcap-sensitive nets

Shield Sharing Optimization

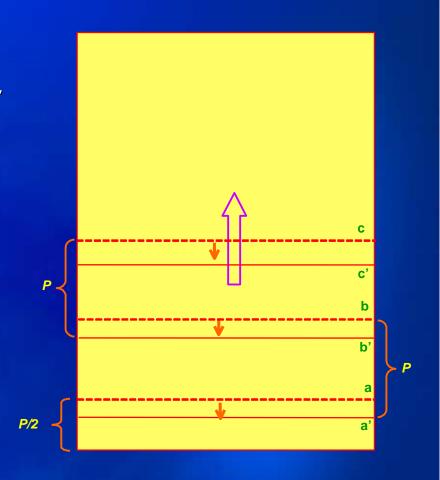

- Order critical signals by placement flexibility, shield count
 - Placement flexibility captures RC of vias near driver, detours
 - Update ordering dynamically during routing process
- Route most constrained net first
 - Maximize reuse of existing shields
- One layer at a time
- Customize this meta-heuristic as needed

Example coming up...

Shield Sharing Optimization


Applied within a domino synthesis system

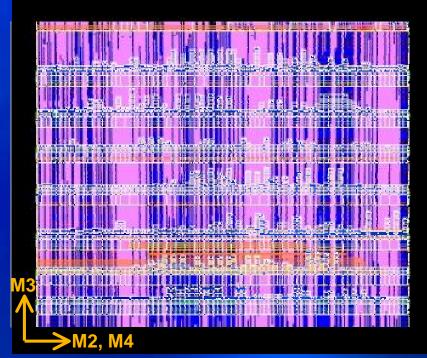
- Library, routing methodology cause placement flexibilities to cluster around a few peaks
- Discretize placement flexibilities into a small number of buckets
- Tile layout with min bucket size
- For current bucket & tile,
 - place 2-shld nets and then 1-shld nets
- Repeat tiling with next larger bucket, until all buckets done


Adaptive Power Routing

- Extract power grid from existing shields
- Add new power lines only in shieldfree regions
- Do adaptive power routing after sensitive signal routing
- Flexibility in power grid => more shields double as part of grid than tracks in a prerouted grid that can double as shields

Adaptive Power Routing

- Starting from "current" power line, search for "next" line
 - Search backward from current track + P for first shield
 - If no shield found, repeat search for first vacant track
 - Set polarity of selected line
 - Reset "current" power line



Optimality Properties

- Adaptive power routing uses fewest additional power lines to complete grid
 - for a given shield/signal net map and a given power pitch
 - Induction based proof presented in paper...
- Adaptive power routing runtime asymptotically optimal
 - Linear in number of tracks
 - O(TP/p), T: # tracks, P: power pitch, p: routing pitch

Design Results

- Tested on several domino blocks from a 0.18μ GHz μP
- One critical block taped out for hi vol product in '99
- Custom quality shielding and routing in each case
- Taped-out block: prerouted grid + greedy shielding failed to fit

- Redesign would have impacted tapeout date
- Valid operation on high volume product at >2GHz

Design Results

- Taped-out block: applied on M3
- 1 M3 trunk per net, very tight net placement constraints
- 363 signal nets, (38+30) preroutes (signal / power)
- Shielding requirements in final layout:
 - 43 tracks: 1 shield
 - 62 tracks: 2 shields
- Only 73 new shields added
 - DWF (Khatri '99): 185 new lines
 - Prerouted grid + greedy shielding: ~140 new lines
- Adaptive power routing: only 4 new power lines
 - A priori grid: ~25 power lines
- Total # track saving: 25% wrt DWF

Summing Up

- Addressed problem of routing in congested regions containing many xcap-sensitive signals
- Solution on algorithmic + methodological fronts:
 - A new GR/DR abstraction for better xcap estimation
 - Sophisticated shield-sharing heuristics
 - Postpone power grid completion to after critical net routing
 - Extract power grid from shields
 - Add power lines only in shield-free areas
- Proved optimality of adaptive power routing
- Validated on high volume μP silicon at >2GHz at 0.18μ
 - Custom quality routing and shielding on critical block