Understanding and Addressing the Impact of Wiring Congestion During Technology Mapping

Davide Pandini
STMicroelectronics, Agrate Brianza, Italy
Central R&D, NVMDP

Joint work with Larry Pileggi and Andrzej Strojwas Carnegie Mellon University, Pittsburgh, PA, U.S.A.

Motivation

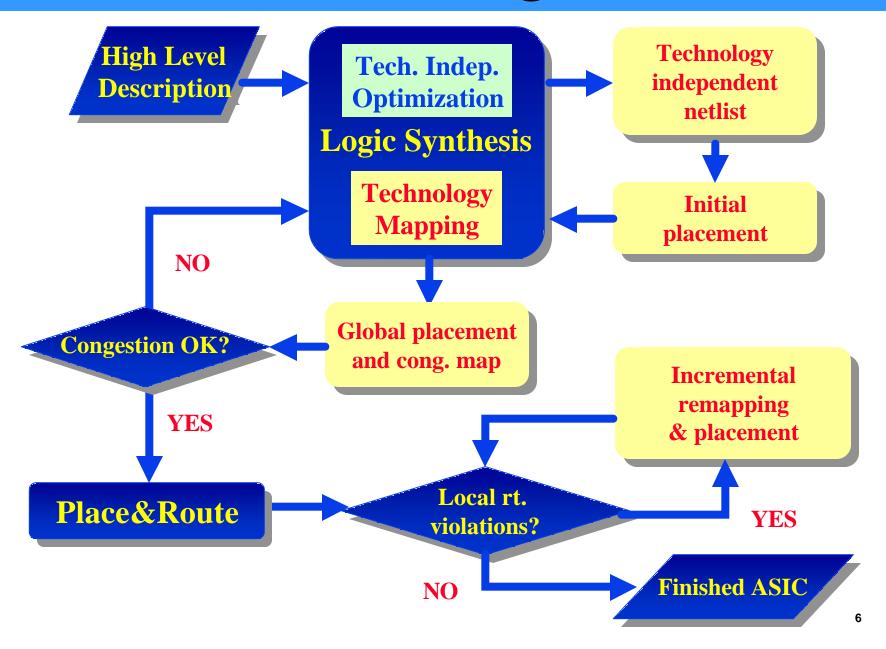
- In DSM wirelength does not scale with feature size
 - Cell area minimization no longer guarantees block/chip size minimization
 - The synthesized netlist may not be routable within the fixed floorplan constraints
- Congestion should be included in the synthesis optimization objectives
 - In the traditional ASIC design flow no physical information is available before layout
 - Physical information can be effectively exploited during technology mapping
- The impact of any synthesis-level congestion minimization approach can be evaluated only after detailed routing

Motivation

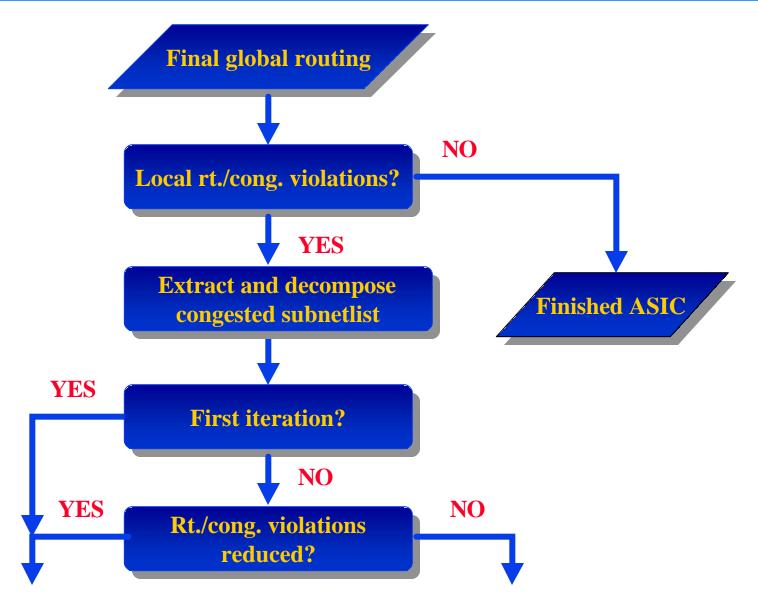
- Including congestion in the synthesis optimization objectives yields sub-optimal cell area and/or delay
 - Trade-offs between congestion and cell area and/or delay minimization must be carefully considered
- Congestion-driven technology mapping can effectively reduce congestion globally
- But localized congested regions may still persist after detailed routing
 - Different layout areas may have very different routing demands
 - Both "global" and "local" nets along with the netlist structure and the routing resources impact on routability
- A single-pass congestion minimization approach is not likely to work for all designs

Congestion-driven tech mapping

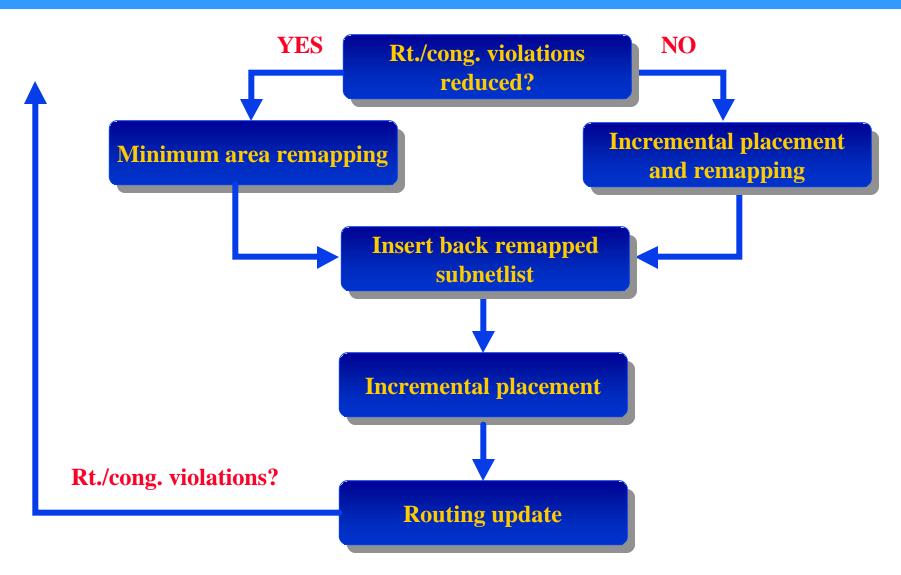
- Connectivity is captured after initial placement of the tech independent netlist
- Placement coordinates are used during:
 - DAG partitioning
 - Tree covering
- The congestion-driven tree covering cost function attempts to place the fanin gates close to their fanouts


$$COST(m, v) = AREA(m, v) + K \cdot WIRE(m, v)$$

- The impact of wiring cost is controlled by the congestion minimization factor K
 - By increasing K structurally routable netlists can be efficiently obtained
 - But a purely predictive congestion measure may yield a large cell area and an unroutable design


Proposed methodology

- Our congestion-aware tech mapping approach can be easily integrated into the traditional ASIC design flow
 - By increasing the congestion minimization factor K structurally more routable netlists can be efficiently generated from the same tech independent netlist and its initial placement
- But a priori estimation of the optimal K value is very difficult
 - The optimal K value is not constant across the chip layout image
- After routing localized congested areas can be incrementally remapped instead of either relaxing the floorplan constraints or resynthesizing the whole circuit


Modified ASIC design flow

Incremental remapping flow (I)

Incremental remapping flow (II)

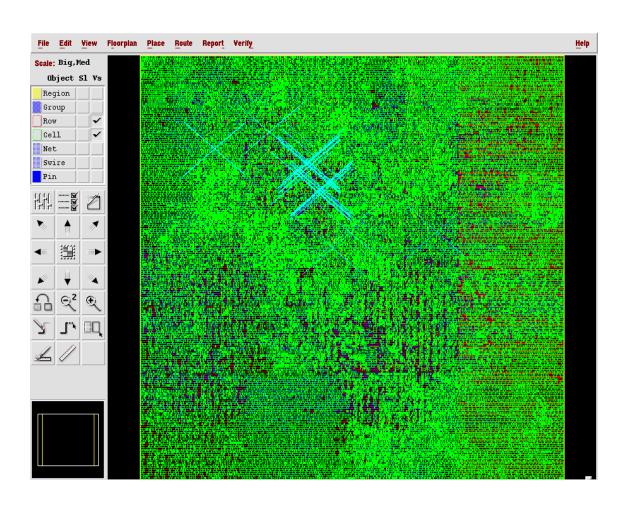
- The incremental flow has been implemented using commercial tools, our congestion-driven tech mapper and various interface utility programs
- The cell library is the CORELIB8DHS[™] 2.1, in 0.18mm, by STMicroelectronics, Inc., and three metal layers have been used in all experiments
- Circuit PDC (IWLS93)
 - 23K gates
 - Die size == 229786mm²
- Industrial circuit (courtesy of Central R&D, STM)
 - 250K gates
 - Die size == 2131133mm²

Circuit PDC – Congestion minimization

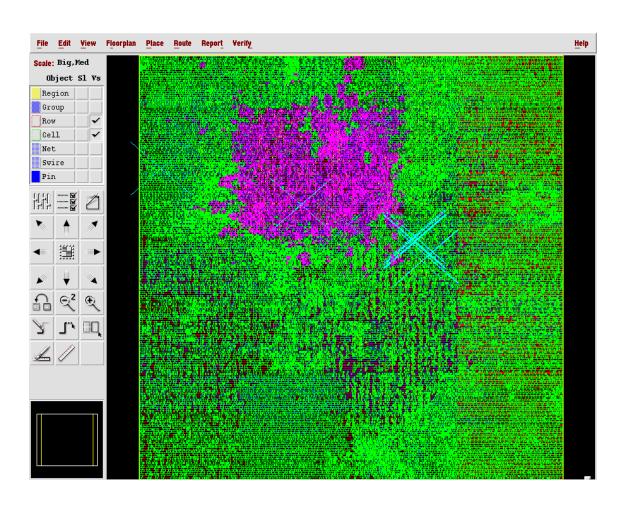
K	Cell Area (mm²)	Area Utilization %	Rt. violations
0.0	128438	55.89	5447
0.00075	131477	57.22	3673
0.001	132514	57.67	0
0.0025	140161	61.0	28
0.005	147714	64.28	0
0.0075	151769	66.05	0
0.05	163103	70.98	158
0.5	178975	77.89	6270
1.0	180330	78.48	7770

Incremental remapping (28 initial violations)
One iteration

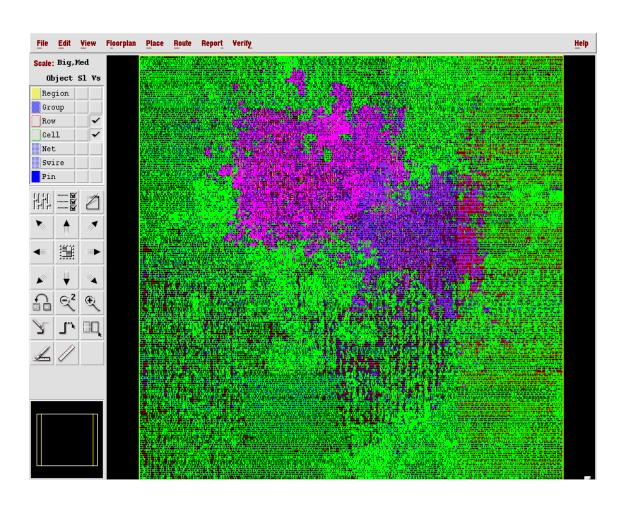
K	Cell Area (mm²)	Area Utilization %	Rt. violations
0.0	139727	60.81	0
0.01	139846	60.86	0


Industrial circuit – Congestion minimization

K	Cell Area (mm²)	Area Utilization %	Rt. violations
0.0	1270309	59.61	22466
0.00075	1273250	59.75	29
0.001	1275687	59.86	44


Incremental remapping

Iteration	Cell Area (mm²)	Area Utilization %	Rt. violations
1st	1273225	59.74	25
2nd	1272697	59.72	0


Tech mapping with K == 0.001 - 44 routing violations

Incremental flow -1st iteration -- 25 routing violations

Incremental flow -2^{nd} iteration -- no routing violations

Conclusions

- We proposed a complete, efficient and robust methodology for congestion minimization both at the synthesis and layout stage of the design flow
- Wiring congestion must be considered globally in logic synthesis and locally in physical design
 - The impact of congestion minimization into the synthesis optimization objectives must be carefully evaluated
 - Different layout regions can have very different routing demands
- A single-pass approach for congestion minimization is unlikely to work for all circuits and it will be successful only in a random, unpredictable way