Slicing Floorplan Design with
Boundary-Constrained Modules

En-Cheng Liul, Ming-Shiun Linl
Jianbang Lai?, Ting-Chi Wang?

Dept. of Information & Computer Engineering, Chung Yuan Christian Univ.,
Chungli, Taiwan

°Tatung Corp., Taipei, Taiwan
3Dept. of Electrical Engineering, Texas A&M University, College Station, TX

Floorplan Design

* Floorplan Design: determine shapes and locations of
modules on a rectangular chip to optimize total area and/or
Interconnect cost (or other measure).

« Slicing floorplan, slicing tree, and normalized Polish
expression:

(%)
1 Oy 21+45%3+%
2) (L* 3
2 4 (5

Boundary Constraints

 Some modules must be placed along given boundaries.

e Reasons:
— Easier I/O connections or
— Easier interconnections between modules of different units.

1 i 0 | B ||a B
A

4

SDSJ]%D FCD

o >

Problem Formulation

 Input: five disjoint rectangular module sets Mg, M, Mg, M+
and Mg.
— Each module in M is a free module that can be placed anywhere.

— Each module in M, (Mg, M+, Mg, respectively) must be placed along
the left (right, top, bottom, respectively) boundary.

— Each module is given the area and aspect ratio range.

* Qutput: a feasible slicing floorplan such that the cost function
A+AW is minimized.
— A: the total area of the floorplan.
— W: the estimated interconnect wirelength, defined to be > ¢jj Xdj; .
* ¢;: number of common nets between modules i and j. 7
* d;: Manhattan distance between i and j.
— A: user-specified constant.

Previous Work (1)

* Wong-Liu algorithm (DAC’86):
— Slicing floorplan design without any placement constraints.

— Represent a slicing structure by a normalized Polish
expression.

— A simulated annealing based approach with three types of
perturb operations:

* M1: swap two adjacent modules; 12*34*+ => 13*24*+
* M2: complement a chain of operators; 12*34*+ => 12*34+*
* M3: swap two adjacent module and operator; 12*34*+ => 12*3*4+

— Use an efficient shape curve computation technique to
find a floorplan of “best” area for a Polish expression, and
then compute the weighted cost of the area and wirelength

for evaluating the expression. S

Previous Work (2)

* Young-Wong algorithm (ASP-DAC’99):
— Slicing floorplan design with boundary constraints.

— An extension of Wong-Liu algorithm.

* Scan a Polish expression once to find the boundary
iInformation of each module in the corresponding
floorplan.

* Fix an infeasible floorplan by swapping modules

2 | 4 | 4
3 3
®) ==

12+53+4+* 52+13+4-+*

— The fixing method may fall.

Combining

* Node c could correspond to a feasible or an infeasible
combining.

Possible boundary constraint:
F,L,R, T, B,

LR, LT, LB, RT, RB, TB,
LRT,LRB, LTB, RTB, or
LRTB.

Resulting * (vertical cut) + (horizontal cut)
constraint A B A B
F 1. F 1. F 1. F 1. F
L 1. L 1. F I. L 1. F
2. F 2. L
R 1. F 1. R 1. R 1. F
2. F 2. R
T . T 1. F 1. F 1. T
2. F 2. T
B 1. B 1. F 1. B 1. F
2. F 2. B
(a)
Resulting * (vertical cut) +(horizontal cut)
constraint A B A B
LRTB (1. L 1. RTB (1. B 1. LRT
2. LT 2. RB (2. LB 2. RT
3. LT 3. RTB |3. LB 3. LRT
4. IB (4. RT (4. RB |4. LT
5. LB 5. RTB |5. RB (5. LRT
6. LTB |6. R 6. LRB |6. T
7. LTB |7. RT |7. LRB |7. LT
8. LTB |8. RB |8 LRB (8. RT
9. LTB |9. RTB (9. LRB [9. LRT
(b)

All Feasible Combinings

Resulting * (vertical cut) + (horizontal cut)
constraint A B A B
LR 1. L 1. R 1. L 1. R
2. R 2. L
3. L 3. LR
4. R 4, LR
5. LR |5 L
6. LR |6. R
7. LR |7. F
8. F 8. LR
LT 1. L I. T I. L 1. T
2. LT 2. T 2. L 2. LT
3. LT 3. F 3. F 3. LT
LB 1. L 1. B 1. B 1. L
2. 1B 2. B 2. LB 2. L
3. LB 3. F 3. LB 3. F
RT 1. T 1. R 1. R 1. T
2. T 2. RT (2. R 2. RT
3. F 3. RT |3. F 3. RT
RB 1. B 1. R 1. B 1. R
2. B 2. RB (2. RB [2. R
3. F 3. RB |3. RB |3. F
B I. T 1. B 1. B 1. T
2. B 2. T
3. T 3. TB
4. B 4. TB
5. 1B 5. T
6. TB 6. B
7. 1B 7. F
8. F 8. 1B
(©)

Resulting * (vertical cut) + (horizontal cut) Middle
constraint A B A B constraint
LRT 1. L 1. RT 1. L 1. RT T
2. LT 2. R 2. R 2. LT
3. LT 3. RT 3. L 3. LRT
4. R 4. LRT
5. LR 5. T
6. LR 6. RT
7. LR 7. LT
8. LR 8. LRT
9. F 9. LRT
LRB 1. L 1. RB 1. B 1. LR B
2. LB 2. R 2. LB 2. R
3. LB 3. RB 3. LB 3. LR
4. RB 4. L
5. RB 5. LR
6. LRB |6. L
7. LRB (7. R
8. LRB |8. LR
9. LRB |9. F
LTB 1. L 1. TB 1. LB 1. T L
2. LT 2. B 2. B 2. LT
3. LT 3. TB 3. LB 3. LT
4. LB 4. T
5. LB 5. TB
6. LTB |6. T
7. LTB |[7. B
8. LTB |8. TB
9. LTB |9. F
RTB 1. TB 1. R 1. RB 1. T R
2. B 2. RT 2. B 2. RT
3. TB 3. RT 3. RB 3. RT
4. T 4. RB
5. TB 5. RB
6. T 6. RTB
7. B 7. RTB
8. TB 8. RTB
9. F 9. RTB
(d

Transformation Method (1)

* Objective: transform a normalized Polish expression into a
slicing floorplan that satisfies all given boundary constraints.

e Main ideas:

— First construct the slicing tree from the given Polish
expression.

— Then examine each internal node of the tree in a bottom-
up fashion.
* Determine if the internal node iIs feasible or not.

* Whenever necessary, modifying the tree to make the
Internal node satisfy its associated boundary constraint.

Transformation Method (2)

Assume C is the internal node currently being considered,
and A and B are its left and right child nodes.

®» ®
When C is a feasible combining

— If C is the root of the tree, the transformation is done and
the tree is returned as the output.

— Otherwise, Cases 1-3 are considered.
When C is an infeasible combining
— Cases 4-6 are considered.

10

Transformation Method (3)

e Feasible combining:

— Case 1: C has the LRT, LRB, LTB, or RTB
constraint.

« Example:

11

Transformation Method (4)

e Method for Case 1 (linear time):

— Move each module with “middle” boundary
constraint to the subtree rooted at C.

— Each move can be implemented as a “delete”
operation, an “insert” operation, and possibly a
proper “basic” operation.

12

Transformation Method (5)

 lllustration of insert and delete operations:
(a): a given slicing tree; (b): delete(i);
(c) insert(parent(i),X).

7 oY 7 oY parent(i)
| S
i Q]
(a)

(b)
- O\ S~
z parent(i) Y
: J
i
(©)

« Each operation can be implemented in constant time.
13

Transformation Method (6)

« Three basic operations O,, O, and O, on a node:
— An O, operation changes the cut direction of a node
(e.9., (a) - (b)).
— An O, operation swaps the left and the right subtrees of a node (e.g.,
(a) - (c)).
— An O, operation performs an O, operation followed by an O, operation
(e.9., (a) - (d)).

— O,, O, and O, each can be implemented in constant time.

° A | B e (]E)

0 9 ®) | (L) x 2 (/;)
(@) (b)

() (+) A

B| A (R)

] ®

® @ ® @
VANVAN AVAN S

(c) (d)

14

Transformation Method (7)

e Feasible combining:

— Case 2: C has the LRTB constraint.
« Example:

15

Transformation Method (8)

e Method for Case 2 (linear time):

— Make one child have three types of constraints, and the
other child the remaining type of constraint. (This is
done by performing a delete, an insert and possibly a
proper basic operations on each boundary-constrained
module.)

— Consider two cases for C:

e Cisin the left subtree of the root:

perform “subtree_delete(B)” and then
“insert(parent(B),right_child(root))” operations.

e Cisin the right subtree of the root:
perform“subtree_delete(A)” and then
“Insert(parent(A),left_child(root))” operations.

16

Transformation Method (9)

 Method for Case 2 (cont’d):

e

N
OC
4927 — g new

N o

{

O
gﬁ?ﬁ ARAR

(b)
— Apply a proper basic operation to make C feasible if

necessary.

— Finally if the root is infeasible, apply a proper basic operation
to make It feasible. Now the whole transformation is done

and the resulting tree is the output. .

Transformation Method (10)

e Feasible combining:

— Case 3: C iIs obtained from one of the
remaining feasible combinings.

»In this case, we do nothing.

18

Transformation Method (11)

* Infeasible combining:

— Case 4: The two child nodes of C have the LR and
TB constraints, respectively.

e Examples:
N
(B)

R R
2

) ()

(@)

(b)

(TB)

(LR)

(LR)

(TB)

19

Transformation Method (12)

 Method for Case 4 (linear time):

— Move a boundary-constrained module in the subtree
rooted at B to the subtree rooted at A.

OO
VAN

— Apply Case 1 method to A.

— Apply a proper basic operation to C to make it feasible
If necessary.

— Apply Case 2 method to C if C is not the root. 20

Transformation Method (13)

 Infeasible combining:
— Case 5: Both A and B have the same LT (RT, LB,
or RB) constraint .

e Examples: B
\ L)
A

\ A | B
LT |LD

g 8

Transformation Method (14)

 Method for Case 5 (linear time):
— Choose a “target” boundary constraint.

— Move each module with the target boundary constraint
from the subtree rooted at B to the subtree rooted at A.

— Apply a proper basic operation to C if necessary.

22

Transformation Method (15)

 Infeasible combining:

— Case 6: C is obtained from one of the remaining
Infeasible combinings.

— Method for Case 6 (linear time):

»Apply a proper basic operation to make C
feasible.

»|f C Is not the root but meets the condition
given in Case 1 (Case 2), apply Case 1 (Case
2) method to C.

23

Transformation Method (16)

« Overall time complexity: quadratic time.

— Checking and fixing each internal node takes
linear time.

— The number of internal nodes is linear.
e (Correctness:

— Each internal node is ensured to be feasible after
transformation.

24

Our Floorplanning Algorithm

Extend the Wong-Liu algorithm by incorporating the
transformation method into it.

Ensure to always generate solutions satisfying all given boundary
constraints.

Main ideas:

— Transform each g, into e/, and then evaluate e;’.
« e/’ is the same as ¢, if g, is already feasible.
— If e/ gets accepted, use e, (instead of €/) to generate next solution.

» Each feasible slicing floorplan is reachable in the solution space.

Initial Polish Final Polish

expression expression

25

Min. Cost

Experimental Results (1)

e Three sets of 16 and 20 boundary-constrained modules
were randomly chosen from ami33 and ami49, respectively.

e Same parameter settings as Young-Wong algorithm.

Machine: Pentium-Ill 600 processor with 128MB RAM.
Each algorithm was run five times on each test circuit.
Results of optimizing area alone.

Young- Wong Algorithm

Our Algorithm

Improv. over Young-Wong Alg.

Area (mm 2) Wirelength (mm) |# Failure Time (sec) Area (mm”) Wirelength (mm) Time (sec) Area Wirelength

A=0 Min | Average Min Average Min Min | Average Min Average Min | Average Min Average Min Average
ami33-1| 1.17 1.22 89.09 95.40 0 3.09 1.16 1.17 84.19 90.58 14.25 15.51 0.85% 4.10% 5.50% 5.05%
ami33-2| 1.17 1.28 94.82 111.89 1 7.02 1.16 1.16 95.08 104.17 | 14.35 16.07 0.85% 9.38% | -0.27% | 6.90%
ami33-3| 1.17 1.19 103.25 | 113.70 0 5.13 1.16 1.17 102.19 | 106.03 | 12.83 15.36 0.85% 1.03% 6.75%
ami49-1| 36.47 | 37.52 | 1818.60 | 1906.39 2 10.28 36.41 | 37.04 |1763.30 | 1826.19 | 80.04 | 84.05 0.16% 3.04% 4.21%
ami49-2| 37.11 | 38.17 | 1864.80 | 1874.27 2 13.82 36.25 | 37.25 |1497.54 | 1581.15 | 52.01 63.25 2.32% 241% | 19.69% | 15.64%
ami49-3| 36.22 | 38.09 | 1702.43 | 1802.80 1 14.03 36.01 | 3696 |[1357.10 | 1522.17 | 50.98 | 56.65 0.58% 20.28% | 15.57%

26

Experimental Results (2)

* Results of optimizing both area and interconnect wirelength.

Young-Wong Algorithm Our Algorithm Improv. over Young-Wong Alg.
= Area (mm 2) Wirelength (mm) | # Failure Time (sec) Area (mm 2) Wirelength (mm) Time (sec) Area Wirelength
0.0158 | Min | Average Min Average Min | Average | Min | Average Min Average Min | Average Min Average Min Average
ami33-1| 1.17 1.21 75.13 78.56 0 4.04 6.97 1.17 1.18 67.99 73.58 12.64 15.39 0.00% 2.48% 9.50% 6.34%
ami33-2 | 1.21 1.23 76.20 83.12 0 3.68 6.87 1.17 1.17 76.08 82.16 15.04 16.44 3.31% 4.88% 0.16% 1.15%
ami33-3| 1.19 1.24 90.67 99.02 0 3.48 6.29 1.17 1.18 88.16 90.57 13.56 15.19 1.68% 4.84% 2.77% 8.53%
amid9-1| 37.00 | 38.87 1238.29 | 1436.56 0 5.83 22.64 | 36.44 | 37.13 | 1260.99 | 1323.91 | 50.19 | 56.67 1.51% 4.48% -1.83% | 7.84%
ami49-2 | 37.10 | 38.10 1316.60 | 1416.82 1 10.82 | 23.84 | 35.66 | 37.02 | 1306.20 | 1341.09 | 52.42 | 55.95 3.88% 2.83% 0.79% 5.34%
amid9-3 | 37.27 | 38.46 1287.51 | 1492.07 1 9.58 24,49 | 36.01 | 36.95 | 1204.94 | 1329.87 | 42.68 | 56.51 3.38% 3.93% 6.41% | 10.87%

27

Experimental Results (3)

The best result of ami33-2 generated by our floorplanning
algorithm when A=0, M;={14, 17, 21, 29}, M, ={1, 4, 23, 32},
Mgz={8, 13, 15, 31}, and My = {10, 12, 18, 33}.

28

Experimental Results (4)

| 13

The best result of ami49-2 generated by our floorplanning algorithm
when A=0.0158, M.={5, 7, 9, 10, 46}, M ={11, 12, 16, 19, 21}, Mz={13,
14, 18, 23, 49}, and M = {8, 15, 20, 24, 38}. -0

Conclusion

We have developed a quadratic-time method to transform a
slicing floorplan into one that satisfying all given boundary
constraints.

We have extended Wong-Liu algorithm by incorporating our
transformation method into it to solve slicing floorplan design
with boundary-constrained modules.

Our floorplanning algorithm ensures to always generate
solutions satisfying all given boundary constraints.

The experimental results indicate that our floorplanning
algorithm can generate solutions with smaller area and
Interconnect wirelength than an existing algorithm.

30

