Min-Cut Partitioning with Functional Replication for Technology Mapped Circuits using Minimum Area Overhead

Wai-Kei Mak

Dept. of Computer Science and Engineering
University of South Florida

Tampa, FL 33620

wkmak@csee.usf.edu

Motivation for Our Work

Cut Size Reduction

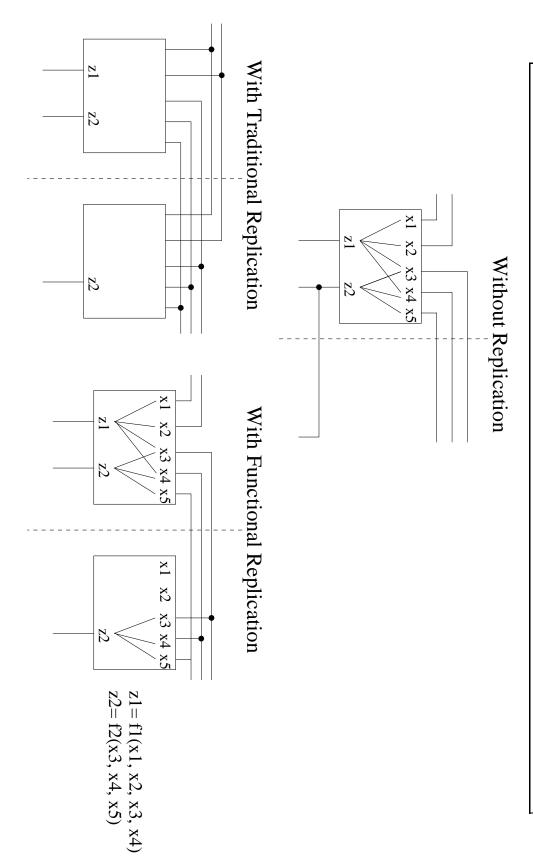
replicating some logic cells in two or more components. The number of cut nets in a partitioned circuit can often be reduced by

Area Consideration

should be avoided. Due to area constraint on a component, excessive amount of replication

A Desirable Solution

replication. Optimize the cut size with the least possible area overhead resulted from


Functional Replication vs. Traditional Replication

- Logic cells can have multiple outputs (e.g. those in FPGA).
- Each cell output can depend on a different subset of cell inputs.
- Traditional Replication
- Preserve all input signals for both cell copies when replicating a cell.
- Functional Replication
- Preserve for each cell copy only the input signals for its required outputs when replicating a cell.

Advantages of functional replication

- More flexible
- Bigger reduction in cut size

Functional Replication vs. Traditional Replication Example

on the cell inputs. Functional replication considers the dependency of different cell outputs

Comparison with Previous Work on Functional Replication

Previous Work

- The only previous work: Kuznar, Brglez, Zajc in DAC'94
- Use a Fiduccia-Mattheyses type heuristic
- Shortcomings
- May functionally replicate some cells unnessarily
- Final cut size is not guaranteed to be optimal

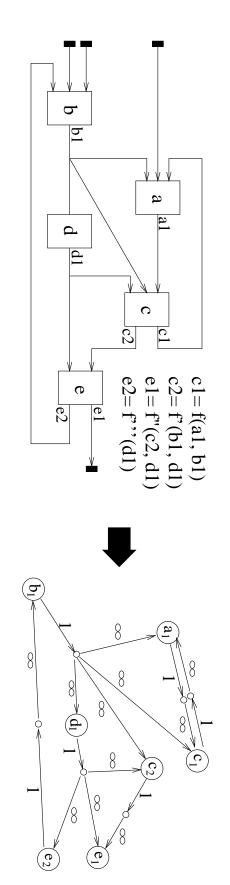
Our Work

- Based on **max-flow min-cut** computation
- Advantages
- A cell is functionally replicated only if it is necessary for attaining the minimum cut size
- Final cut size is always optimal

Related Work

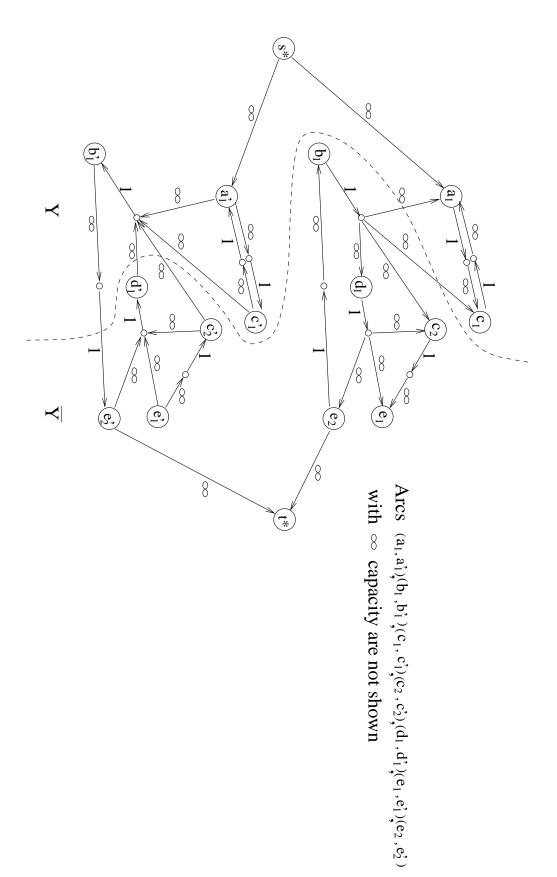
- Liu, Kuo, Cheng, Hu in TCAD'95 ("A replication cut for two-way partitioning")
- Use traditional replication
- Cut size $|C_{trad_rep}|$ found is optimal under traditional replication
- No control on amount of replication
- Mak, Wong in ICCAD'96 ("Minimum replication min-cut partitioning")
- Use traditional replication
- Cut size $|C_{trad_rep}|$ found is optimal under traditional replication
- Optimize amount of replication

Current Work


- Use functional replication
- Cut size $|C_{func_rep}|$ found is optimal under functional replication, moreover, $|C_{func_rep}| \leq |C_{trad_rep}|$
- Optimize replication area overhead

Method

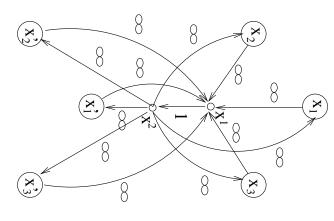
A 2-phase network-flow approach.


Phase 1

The circuit is first represented using a **function graph** G.

dency of the functions. Each node represents a function and the edges show the depen-

A **flow network** N is then constructed based on the function graph.


replication partition of the circuit. **Theorem:** Any minimum cut of the flow network N induces a min-cut

a Phase 2 is required. However, to minimize the area overhead to attain the minimum cut size,

 $\{x_i, x_i' : i = 1, 2, \dots, p\}$ in N. **Fact:** A cell x is replicated in the induced partition iff the cut divides

Phase 2

- other min-cut replication partitions. cut partition requiring the smallest area overhead will stand out from The network N is modified into a network N_{Area} so that the min-
- Network N_{Area} contains a **penalty arc set** for each cell x so that a penalty equals to the area of cell x is incurred if a cut divides $\{x_i, x_i' : i = 1, 2, ..., p\}$ (i.e., if cell x is replicated).

partition of the circuit that uses the smallest area overhead. **Theorem:** A minimum cut of network N_{Area} induces a min-cut replication

Area-Constrained Partitioning

- Our algorithm can be used to **improve** the solution produced by any area-constrained functional replication partitioning heuristic
- Suppose a heuristic partitioned the functions of a circuit into three sets: S^h, T^h, R^h with R^h being the set of replicated functions.
- By collapsing all nodes in S^h to the source s^* and all nodes in satisfying $S^h \subset S$ and $T^h \subset T$ using our algorithm. T^h to the sink t^* in network N, we can compute a new partition
- The optimality of our algorithm guarantees that
- The new cut size will be smaller
- ii. The area overhead incurred will be minimized

Experimental Results

- A simulated-annealing based heuristic was first used to compute a good partition with replication.
- Our algorithm was applied to further optimize the partition.
- Large reduction in area overhead was obtained.

Experimental Results (Cont'd)

		SA	0	ptimized	Overhead
Circuit	cut	overhead	tuc	overhead	reduction
c3540	14	9.5%	12	8.5%	10.5%
c5315	တ	9.8%	o	6.9%	29.6%
c6288	3	9.5%	12	4.1%	56.8%
c7552	ယ	9.8%	ယ	8.4%	14.3%
s5378	19	9.7%	19	7.9%	18.6%
s9234	35	9.9%	35	7.7%	22.2%
s15850	40	10.0%	40	7.7%	23.0%
s38417	98	10.0%	69	6.3%	37.0%
s38584	101	10.0%	80	4.5%	55.0%