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Outline

q Elmore delay based formulation
q Central moment metrics
q Posynomiality of central moments
q Extension to inductive interconnects
q Applications
q Experiment results



2

Interconnect Problem

q The delay due to the global RC(L) interconnects
is becoming a dominant portion of the overall
path delay

Interconnect Delay (Al)

Interconnect Delay (Cu)

q Practical interconnect
optimization methods
are required for
global nets
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Optimization Via Elmore Delay

q Interconnect sizing formulations based on the
Elmore delay model:
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—  Minimize the area

—  Delay constraints

—  Width bounds

q Many efficient algorithms have been developed:
q Lagrange relaxation method
q Sensitivity based convex programming
q Local refinement algorithm
q Sequential quadratic programming
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q Posynomial function of sizes:
q Posynomiality:

Posynomiality of Elmore Delay

q Elmore delay is the first order metric of RC
interconnect delay
q The first moment:
q Sum of RC products:

q Function of width:
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Posynomial Programming

q Posynomial geometric programming:

q A posynomial function can be transformed into  a
convex function under the exponential
substitution:

q The interconnect sizing problem is a convex
programming problem under exponential
substitution
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—  Sum of wi*li          

—  Delay constraints

—  Width bounds

)xexp(w jj =
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q Signal integrity becomes an important
issue in giga-scale DSM design
q Signal quality

q Clock attenuation
q Signal transition time

q Signal uncertainty
q Noise peak
q Extra-delay due to noise

Signal Integrity Problems
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 Higher Order Moments

q Limitation of first order metrics
q Incapable of modeling integrity
q Incapable of modeling noise

q High order moments:
q It is trivial to show that higher order moments (RC

trees) are also posynomial

q But reduced order models in terms of higher order
moments do not preserve posynomiality
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Central Moments

q Definition of the central moments

q  µ2 is a natural metric for signal quality/shape
q Standard deviation
q Dispersion
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Signal Attenuation

q An accurate model for signal attenuation in RCL
clock tree [Celik99]

q A provable upper bound for RC responses

q  An upper bound for overdamped cases (RCL)
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Signal Transition

22 µpTR =

q  µ2 as a metric of RC signal transition time
[Elmore48]:

q Transfer function:

q Signal transition time:
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Delay Due To Crosstalk

q  µ2 is a metric of delay uncertainty due to
crosstalk noise

q Assuming a finite ramp input TR and an
environment noise Vn

q Worst case alignment: ∆delay=TR*Vn/Vdd

Noise VN

∆delay
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Posynomiality Proof

q Is µ2 a posynomial function of wire widths?

q m1 and m2 in an RC tree are posynomial
functions of wire widths

q µ2  is provable positive for RC tree response
[Gupta97]

q Prove by induction: µ2 of RC tree response
is a posynomial function of wire widths

2
122 2 mm −=µ
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For Inductive Interconnect

q High order moments for RCL circuits:
q M2 is not guaranteed to be positive for RCL circuit

responses

q Modeling of on-chip inductance
q A simple linear model for embedded wire

q Posynomial condition of µ2 (sufficient condition)
which can be verified before solving the problem
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Sizing Formulations

q A posynomial interconnect sizing
formulation with second order constraints:

q The inequality constraints on µ2 represent
the constraints on signal quality
q Attenuation:
q Transition time:

0
2

2 )1log(10)( αωµωα ≤−−=

022 TRpTR ≤= µ

(I) and
tosubject

)W(Area minimize
0d)W(m 1,k

and N,...iwww iii 1=≤≤
02µ s)W(k, ≤

≤



15

Sizing Formulations

q For clock tree sizing problems, the delay
constraints are equality constraints in order to
achieve zero skew solutions

q Given the posynomiality of the constraints,
the above problem can be solved via a multi-
stage approach. Each stage involves solving
a problem of (I). [Celik99][Kay97]
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Sizing Formulations

q The posynomiality can be applied to
other type of sizing formulations

q Sizing formulations (I) and (II) are both
posynomial programs as the Elmore
delay based sizing problems

(II) and
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Experiments
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q Example:
q Design Constraints:

q Extend sequential quadratic programming wire
sizing algorithm (ORCIDS)
q Provable convergence

q Compute µ2 in o(n) complexity by path tracing
q Match the  second order moments of transmission

line models [Yu95]
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Experiment Results
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Conclusions

q The second central moment is a posynomial
metric of interconnect signal integrity

q Interconnect sizing problems with second order
signal integrity constraints are formulated as
posynomial programs

q The existing algorithms can be extended  to
solve the new sizing problems with provable
convergence


