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Outline

= Motivation

s The truth about interconnect
dominance

= Uncertainty in interconnect estimation
= Will it change design flows?
= Conclusions
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Interconnect Estimation

= Need early estimation

= Need accurate estimation

= Estimation error and stage delay
= What does it depend on?




—

Impact of Interconnect on Delay
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Impact of Interconnect on Delay
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Interconnect Estimation Error

= Estimation error and stage delay

m Best case
Get estimate from actual values

= Compare estimates with real values
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An Experiment

= Consider a placed and routed design
= Meets constraints

ITIC




An Experiment

= Design partitioned into blocks

ITIC




An Experiment

= Design partitioned into blocks
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An Experiment

= Use actual detailed placement
= Steiner model for nets

No. (A)f K-pin nets
: Mean

>
Net-length

ITIC

local <«— 1Yo X global
net

net




An Experiment

s Consider different block sizes
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Best-case Wireload Model

= Estimated capacitance
Mean wirelength from detailed placement

= Actual capacitance
Actual wirelength from detailed placement

delay with estimated capacitance

r, =

delay with actual net capacitance




Best-case Wireload Model

delay with estimated capacitance

r, =

delay with actual net capacitance




Best-case Wireload Model

delay with estimated capacitance

delay with actual net capacitance
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Best-case Wireload Model

= Profiles for an industry design
0.18 micron, 144k gates
Distribution of ratio r; over 2 pin ‘local’ nets
Different block sizes

delay with estimated capacitance

I, =

delay with actual net capacitance
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Best-case Wireload Model
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Best-case Wireload Model
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Best-case Wireload Model
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As Good As It Gets

= Actual and estimated delays differ
= Not surprising!

Use mean of distribution

What about deviation?

= Breaks down for large block sizes
= Improves for smaller block sizes
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As Good As It Gets

s Best-case model breaks down at
some block size

= Error in gate-level synthesis?

= Ignored routing iIssues

congestion, obstacles, layer assignments,
vias and jogs

extracted (and more exact) capacitances
and resistances




Who's driving?

= Experiment : vary driver sizes

Typical input lope Fixed net length (capacitive |oad)

|/

Fixed fanout
load

Fanout delay without interconnect

Fanout delay with interconnect

Only capacitive effects seen here




Who's driving?
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Choice of Driver Sizes

= Optimal choice of driver ?
Minimum delay, reasonable output slope
Low value of r

= Strong driver
Neglect interconnect capacitance
May be sub-optimal!

= Longer net = resistive effects
dominate
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Criticality of Layer Assignment

= Layer assignment impact Is process
specific

= Variations affect wireload model error

= Viaresistances

= Coupling capacitances
Neighboring routes and switching
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Design-specific Dependencies

= Depends on congestion
= Depends on netlist connectivity
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Design-specific Dependencies

= EXperiment:
Re-order IO pins for a datapath design
48k gates, 0.25 micron

Compare net delays from placed and routed
results in both cases

delay with floorplan A

laB =

delay with floorplan B
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In Summary

= Interconnect estimation error
process specifics
driver sizes chosen
layer assignment, vias
coupling capacitances
meandering routes, congestion
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Design Methodologies Impact

= Block sizes suitable for synthesis
= Synthesis-placement loop

= Use strong drivers

[ICCAD98] Sylvester and Keutzer, “Getting to
the Bottom of Deep Sub-micron”

= Constant delay synthesis
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Physical Prototyping

= Enough detall to sign-off on design
Interconnect estimate/delays make sense
Also estimate congestion, power, clock-tree

= Enough abstraction to explore design
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Physical Prototyping

= RTL Exploration
= Floorplan/constraint changes

RTL Design
Synthesis Floorplan

Refine Placement

Optimization and Phxsical
Sign-off rototype
v

Physical Design




Some Results

Comparison of cycle times
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Conclusions

= Interconnect estimation
Never fully accurate
More refined as physical detail increases

= Design sign-off
= Physical prototyping

= Enables new hierarchical design
methodology




