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Interconnect Estimation

Need early estimation
Need accurate estimation
Estimation error and stage delay
What does it depend on?



Impact of Interconnect on Delay

delay without interconnect

delay
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Impact of Interconnect on Delay

delay without interconnect

delay with interconnectr =

delay

load
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Interconnect Estimation Error

Estimation error and stage delay
Best case

Get estimate from actual values

Compare estimates with real values



An Experiment

Consider a placed and routed design
Meets constraints



An Experiment

Design partitioned into blocks
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Design partitioned into blocks



An Experiment

local
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Use actual detailed placement
Steiner model for nets
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An Experiment

Consider different block sizes
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Best-case Wireload Model

Estimated capacitance
Mean wirelength from detailed placement

Actual capacitance
Actual wirelength from detailed placement

delay with estimated capacitance

delay with actual net capacitance
r1 =



Best-case Wireload Model

delay with estimated capacitance

delay with actual net capacitance
r1 =



Best-case Wireload Model

delay with estimated capacitance

delay with actual net capacitance
r1 =



Best-case Wireload Model

Profiles for an industry design
0.18 micron, 144k gates

Distribution of ratio r1 over 2 pin ‘local’ nets
Different block sizes

delay with estimated capacitance

delay with actual net capacitance
r1 =



Best-case Wireload Model
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Best-case Wireload Model
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Best-case Wireload Model
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As Good As It Gets

Actual and estimated delays differ
Not surprising!

Use mean of distribution
What about deviation?

Breaks down for large block sizes
Improves for smaller block sizes



As Good As It Gets

Best-case model breaks down at
some block size
Error in gate-level synthesis?
Ignored routing issues

congestion, obstacles, layer assignments,
vias and jogs

extracted (and more exact) capacitances
and resistances



Who’s driving?

Experiment : vary driver sizes

Only capacitive effects seen here

Fanout delay without interconnect

Fanout delay with interconnect
r =

Fixed fanout
load

Fixed net length (capacitive load)
Typical input slope



Who’s driving?

Driver Size Dependence
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Choice of Driver Sizes

Optimal choice of driver ?
Minimum delay, reasonable output slope

Low value of r

Strong driver
Neglect interconnect capacitance

May be sub-optimal!

Longer net ⇒⇒⇒⇒ resistive effects
dominate



Criticality of Layer Assignment

Layer assignment impact is process
specific
Variations affect wireload model error
Via resistances
Coupling capacitances

Neighboring routes and switching



Design-specific Dependencies

Depends on congestion
Depends on netlist connectivity



Design-specific Dependencies

Experiment:
Re-order IO pins for a datapath design

48k gates, 0.25 micron
Compare net delays from placed and routed
results in both cases

delay with floorplan A

delay with floorplan B
rAB =
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In Summary

Interconnect estimation error
process specifics

driver sizes chosen
layer assignment, vias

coupling capacitances
meandering routes, congestion



Design Methodologies Impact

Block sizes suitable for synthesis
Synthesis-placement loop
Use strong drivers

[ICCAD98] Sylvester and Keutzer, “Getting to
the Bottom of Deep Sub-micron”

Constant delay synthesis



Physical Prototyping

Enough detail to sign-off on design
Interconnect estimate/delays make sense

Also estimate congestion, power, clock-tree

Enough abstraction to explore design



Physical Prototyping

RTL Exploration
Floorplan/constraint changes

Physical 
Prototype 

RTL Design
Synthesis

Refine Placement

Optimization and
Sign-off

Physical Design

Floorplan



Some Results
Comparison of cycle times
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Conclusions

Interconnect estimation
Never fully accurate

More refined as physical detail increases

Design sign-off
Physical prototyping
Enables new hierarchical design
methodology


