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IC Technology Scaling
 Feature size keeps scaling down to 45nm and below
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 Large process variation lead to circuit failures and yield problem.

* Data Source: Dr. Ralf Sommer, DATE 2006, COM BTS DAT DF AMF;  



Statistical Problems in IC Technology
 Statistical methods were proposed to address variation 

problems
 Focus on performance probability distribution extraction in p p y

this work
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How to model the stochastic circuit behavior (performance)?
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Leakage Power Distribution
 An example ISCAS-85 benchmark circuit:

 all threshold voltages (Vth) of MOSFETs have variations that follow Normal 
distribution.

 The leakage power distribution follow lognormal distribution.

*Courtesy by Fernandes, R.; 
Vemuri, R.; , ICCD 2009. 
pp 451-458 4-7 Oct 2009

It i d i d t t t th bit ( ll l) di t ib ti f

pp.451 458, 4 7 Oct. 2009 

 It is desired to extract the arbitrary (usually non-normal) distribution of 
performance exactly.



Problem Formulation
 Given: random variables in parameter space

 a set of (normal) random variables {ε1, ε2, ε3, ...} to model process a set o ( o a ) a do a ab es {ε1, ε2, ε3, } to ode p ocess
variation sources.

 Goal: extract the arbitrary probability distribution of performance Goal: extract the arbitrary probability distribution of performance 
f(ε1, ε2, ε3, ...) in performance space.
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Monte Carlo simulation

 Monte Carlo simulation is the most straight-forward g
method.
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 However, it is highly time-consuming!



Response Surface Model (RSM)

 Approximate circuit performance (e.g. delay) as an analytical pp p ( g y) y
function of all process variations (e.g. VTH, etc )
 Synthesize analytical function of performance as random variations.
 Results in a multi-dimensional model fitting problem. Results in a multi dimensional model fitting problem.

 Response surface model can be used to
 Estimate performance variability

f

p y
 Identify critical variation sources
 Extract worst-case performance corner
 Etc

Δx1
Δx2

 Etc.
  NNpf   110



Flow Chart of APEX*
Synthesize analytical function 

of performance using RSM
  NNpf   110

Calculate moments

Calculate the probability 
distribution function (PDF) of ( )
performance based on RSM

h(t) can be sed to estimate df(f)h(t) can be used to estimate pdf(f)

*Xin Li, Jiayong Le, Padmini Gopalakrishnan and Lawrence 
Pileggi, "Asymptotic probability extraction for non-Normal 
distributions of circuit performance," IEEE/ACM International 
Conference on Computer-Aided Design (ICCAD), pp. 2-9, 2004. 



Li it ti f APEXLimitation of APEX
 RSM based method is time-consuming to get the analytical function ofRSM based method is time consuming to get the analytical function of 

performance.
 It has exponential complexity with the number of variable parameters n and 

order of polynomial function q.

 e.g., for 10,000 variables, APEX requires 10,000 simulations for linear 
function, and 100 millions simulations for quadratic function.

1 2 1 1 2 2( , , , ) ( )q
n n nf x x x x x x      

 RSM based high-order moments calculation has high complexity
th b f t i fk i ti ll ith th d f t the number of terms in fk increases exponentially with the order of moments.

1 2 1 1 2 2( , , , ) ( )k k q
n n nf x x x x x x       



Contribution of Our Work
Step 1: Calculate High Order Moments of Performance

APEX Proposed Method
Fi d l ti l f ti f f i RSMFind analytical function of performance using RSM

  NNpf   110

Calculate high order moments

A few samplings at selected points.

Calculate high order moments
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Calculate moments by Point Estimation Method

Step 2: Extract the PDF of performance
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 Our contribution:
We do NOT need to use analytical formula in RSM;
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 We do NOT need to use analytical formula in RSM;
 Calculate high-order moments efficiently using Point Estimation Method;
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Moments via Point Estimation
 Point Estimation: approximate high order moments with a 

weighted sum of sampling values of f(x).
are estimating points of random variable are estimating points of random variable.

 Pj are corresponding weights.
 k-th moment of f(x) can be estimated with

PDF

 Existing work in mechanical area* only provide empirical 
l ti l f l f d f fi t f t

x1 x2 x3

analytical formulae for xj and Pj for first four moments.

Question – how can we accurately and efficiently 
calculate the higher order moments of f(x)?calculate the higher order moments of f(x)?

* Y.-G. Zhao and T. Ono, "New point estimation for probability moments," Journal of Engineering Mechanics, vol. 126, no. 4, 
pp. 433-436, 2000.



Calculate moments of performance
 Theorem in Probability: assume x and f(x) are both continuous 

random variables, then:

 Flow Chart to calculate high order moments of performance: Flow Chart to calculate high order moments of performance:

pdf(x) of parameters is known Step 5: extract performance distribution pdf(f)

Step 1: calculate moments of parameters








m

j

k
jj

kk
x xPdxxpdfxm

1

)( ))((

Step 4: calculate moments of performance
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Step 2: calculate the estimating points xj
and weights Pj

Step 3: run simulation at estimating points xj 
and get performance samplings f(xj)

Step 2 is the most important step in this process.



Estimating Points xj and Weights Pj
With t t hi th d d b l l t d b With moment matching method, and Pj can be calculated byjx
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 Assume residues aj= Pj and poles bj= 1/ jx
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 system matrix is well-structured (Vandermonde matrix);
 nonlinear system can solved with deterministic method.



Extension to Multiple Parametersp

 Model moments with multiple parameters as a linear combinationp p
of moments with single parameter.

• f(x1,x2,…,xn) is the function with multiple parameters.

• f(xi) is the function where xi is the single parameter.

• gi is the weight for moments of f(xi)

• c is a scaling constant.



Error Estimation
 We use approximation with q+1 moments as the exact value, when 

investigating PDF extracted with q moments.

Wh When moments decrease progressively
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 Other cases can be handled after shift (f<0), reciprocal (f>1) or 
scaling operations of performance merits.
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(1) Validate Accuracy: Settings( ) y g
 To validate accuracy, we 

compare following methods: MMC+APEX PEMp g
 Monte Carlo simulation.

 run tons of SPICE 
simulations to get 
performance distribution

Run Monte Carlo

Calculate time

Point Estimation

performance distribution.

 PEM: point estimation based 
method (proposed in this work)

Calculate time 
moments

 calculate high order moments 
with point estimation.

 MMC+APEX:

Match with the time 
moment of a LTI system

 obtain the high order 
moments from Monte Carlo 
simulation.

 perform APEX analysis flowperform APEX analysis flow 
with these high-order 
moments.



6-T SRAM Cell
 Study the discharge behavior in BL B node during reading Study the discharge behavior in BL_B node during reading 

operation.
 Consider threshold voltage of all MOSFETs as independent

Gaussian variables with 30% perturbation from nominal valuesGaussian variables with 30% perturbation from nominal values.
 Performance merit is the voltage difference between BL and BL_B

nodes.



 Variations in threshold voltage lead to deviations on discharge behavior

Accuracy Comparison
g g

 Investigate distribution of node voltage at certain time-step.
 Monte Carlo simulation is used as baseline.
 Both APEX and PEM can provide high accuracy when compared with MC g y

simulation.
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(2)Validate Efficiency: PEM vs. MC

 For 6-T SRAM Cell, Monte Carlo methods requires 3000 

( ) a date c e cy s C

q
times simulations to achieve an accuracy of 0.1%. 

 Point Estimation based Method (PEM) needs only 25 times
simulations and achieve up to 119X speedup over MCsimulations, and achieve up to 119X speedup over MC 
with the similar accuracy.



Compare Efficiency: PEM vs. APEX
 To compare with APEX:

 One Operational Amplifier under a commercial 65nm CMOS process.
 Each transistor needs 10 independent variables to model the random p

variation*. 

Circuit Name Transistor # Mismatch Variable #

SRAM Cell ~ 6 ~ 60SRAM Cell  6  60

Operational Amplifier ~ 50 ~ 500

ADC ~ 2K ~ 20K

SRAM Critical Path 20K 200K

 We compare the efficiency between PEM and APEX by the required 
number of simulations.

SRAM Critical Path ~ 20K ~ 200K

 Linear vs. Exponential Complexity:
 PEM: a linear function of number of sampling point and random variables PEM: a linear function of number of sampling point and random variables.
 APEX: an exponential function of polynomial order and number of variables.

* X. Li and H. Liu, “Statistical regression for efficient high-dimensional modeling of analog and mixed-signal performance variations," in Proc. 
ACM/IEEE Design Automation Conf. (DAC), pp. 38-43, 2008.



Operational Amplifierp p
 A two-stage operational amplifier

 complexity in APEX increases exponentially with polynomial orders 
and number of variablesand number of variables.

 PEM has linear complexity with the number of variables.
Quadratic polynomial caseOperational Amplifier with 500 variables

~124X

~124X

Polynomial Order in RSM

The Y-axis in both figures has log scale!



C l iConclusion
 Studied stochastic analog circuit behavior modeling Studied stochastic analog circuit behavior modeling

under process variations

L th P i t E ti ti M th d (PEM) t Leverage the Point Estimation Method (PEM) to 
estimate the high order moments of circuit behavior 
systematically and efficiently.

 Compared with exponential complexity in APEX, 
proposed method can achieve linear complexity ofproposed method can achieve linear complexity of 
random variables.



Thank you!Thank you!Thank you!Thank you!
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