Stochastic Analog Circuit Behavior Modeling by Point Estimation Method

Fang Gong¹, Hao Yu², Lei He¹

¹Univ. of California, Los Angeles ²Nanyang Technological University, Singapore

Outline

- Backgrounds
- Existing Methods and Limitations
- Proposed Algorithms
- Experimental Results
- Conclusions

IC Technology Scaling

Feature size keeps scaling down to 45nm and below
 90nm
 65nm
 45nm

Large process variation lead to circuit failures and yield problem.

Yield history for several logic manufacturers

^{*} Data Source: Dr. Ralf Sommer, DATE 2006, COM BTS DAT DF AMF;

Statistical Problems in IC Technology

- Statistical methods were proposed to address variation problems
- Focus on performance probability distribution extraction in this work

How to model the stochastic circuit behavior (performance)?

Leakage Power Distribution

- An example ISCAS-85 benchmark circuit:
 - all threshold voltages (Vth) of MOSFETs have variations that follow Normal distribution.
- The leakage power distribution follow lognormal distribution.

*Courtesy by Fernandes, R.; Vemuri, R.; , *ICCD 2009.* pp.451-458, 4-7 Oct. 2009

 It is desired to extract the arbitrary (usually non-normal) distribution of performance exactly.

Problem Formulation

- Given: random variables in parameter space
 - a set of (normal) random variables $\{\epsilon_1, \epsilon_2, \epsilon_3, ...\}$ to model process variation sources.
- **Goal**: extract the arbitrary probability distribution of performance $f(\epsilon_1, \epsilon_2, \epsilon_3, ...)$ in **performance space**.

Outline

- Backgrounds
- Existing Methods and Limitations
- Proposed Algorithms
- Experimental Results
- Conclusions

Monte Carlo simulation

 Monte Carlo simulation is the most straight-forward method.

However, it is highly time-consuming!

Response Surface Model (RSM)

- Approximate circuit performance (e.g. delay) as an analytical function of all process variations (e.g. ΔV_{TH}, etc.)
 - Synthesize analytical function of performance as random variations.
 - Results in a multi-dimensional model fitting problem.

- Response surface model can be used to
 - Estimate performance variability
 - Identify critical variation sources
 - Extract worst-case performance corner
 - Etc.

$$f(\varepsilon) = p_0 + \alpha_1 \varepsilon_1 + \dots + \alpha_N \varepsilon_N$$

Flow Chart of APEX*

Synthesize analytical function of performance using RSM

Calculate moments

Calculate the probability distribution function (PDF) of performance based on RSM

$$\widehat{m}_{t}^{k} = \frac{(-1)^{k}}{k!} \cdot \int_{-\infty}^{+\infty} t^{k} \cdot \underbrace{h(t)}_{-\infty} dt$$

$$\frac{a_r}{\sqrt{k+1}}$$

$$h(t) = \begin{cases} \sum_{r=1}^{M} a_r \cdot e^{b_r^{k+1} \cdot t} & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

h(t) can be used to estimate pdf(f)

*Xin Li, Jiayong Le, Padmini Gopalakrishnan and Lawrence Pileggi, "Asymptotic probability extraction for non-Normal distributions of circuit performance," IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 2-9, 2004.

- RSM based method is time-consuming to get the analytical function of performance.
 - It has exponential complexity with the number of variable parameters n and order of polynomial function q.

$$f(x_1, x_2, \dots, x_n) = (\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n)^q$$

- e.g., for 10,000 variables, APEX requires 10,000 simulations for linear function, and 100 millions simulations for quadratic function.
- RSM based high-order moments calculation has high complexity
 - the number of terms in f^k increases exponentially with the order of moments.

$$E(f^p) = \int_{-\infty}^{+\infty} (f^p \cdot pdf(f))df$$
$$f^k(x_1, x_2, \dots, x_n) = (\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n)^{k \times q}$$

Contribution of Our Work

Step 1: Calculate High Order Moments of Performance

APEX

Find analytical function of performance using RSM $f(\varepsilon) = p_0 + \alpha_1 \varepsilon_1 + \dots + \alpha_N \varepsilon_N$

Calculate high order moments

$$m_f^k = \int_{-\infty}^{+\infty} (f^k \cdot pdf(f))df$$

Proposed Method

A few samplings at selected points.

Calculate moments by Point Estimation Method

Step 2: Extract the PDF of performance

$$\widehat{m}_{f}^{k} = \frac{(-1)^{k}}{k!} \cdot \int_{-\infty}^{+\infty} (f^{k} \cdot pdf(f))df = \widehat{m}_{t}^{k} = \frac{(-1)^{k}}{k!} \cdot \int_{-\infty}^{+\infty} (t^{k} \cdot h(t))dt = -\sum_{r=1}^{M} \frac{a_{r}}{b_{r}^{k+1}} \quad \square \qquad h(t) = \sum_{r=1}^{M} a_{r} \cdot e^{b_{r}^{k+1} \cdot t} \approx pdf(f)$$

- Our contribution:
 - We do NOT need to use analytical formula in RSM;
 - Calculate high-order moments efficiently using Point Estimation Method;

Outline

- Backgrounds
- Existing Methods and Limitations
- Proposed Algorithms
- Experimental Results
- Conclusions

Moments via Point Estimation

- Point Estimation: approximate high order moments with a weighted sum of sampling values of f(x).
 - x_j $(j = 1, \dots, p)$ are estimating points of random variable.
 - P_i are corresponding weights.
 - k-th moment of f(x) can be estimated with

$$m_f^k = \int_{-\infty}^{+\infty} f^k \cdot pdf(f)df \approx \sum_{j=1}^p P_j \cdot f(x_j)^k.$$

• Existing work in mechanical area* only provide empirical analytical formulae for x_i and P_i for *first four moments*.

Question – how can we accurately and efficiently calculate the higher order moments of f(x)?

^{*} Y.-G. Zhao and T. Ono, "New point estimation for probability moments," Journal of Engineering Mechanics, vol. 126, no. 4, pp. 433-436, 2000.

Calculate moments of performance

 Theorem in Probability: assume x and f(x) are both continuous random variables, then:

$$E(f^{k}(x)) = \int f^{k}(x) \cdot pdf(f)df = \int f^{k}(x) \cdot pdf(x)dx$$

Flow Chart to calculate high order moments of performance:

pdf(x) of parameters is known

Step 1: calculate moments of parameters

$$m_x^k = \int_{-\infty}^{+\infty} (x^k \cdot pdf(x)) dx \approx \sum_{j=1}^m P_j \cdot (x_j)^k$$

Step 2: calculate the estimating points x_j and weights P_i

Step 5: extract performance distribution *pdf(f)*

Step 4: calculate moments of performance

$$m_f^k = \int_{-\infty}^{+\infty} (f^k \cdot pdf(x)) dx \approx \sum_{j=1}^m P_j \cdot (f(x_j))^k$$

Step 3: run simulation at estimating points x_j and get performance samplings $f(x_i)$

Estimating Points x_j and Weights P_j

• With moment matching method, x_j and P_j can be calculated by

$$\sum_{j=1}^{m} P_{j} = 1 = m_{x}^{k}$$

$$\sum_{j=1}^{m} P_{j} \cdot x_{j} = E(x) = m_{x}^{1}$$

$$\sum_{j=1}^{m} P_{j} \cdot x_{j}^{2} = E(x^{2}) = m_{x}^{2}$$
...
$$\sum_{j=1}^{m} P_{j} \cdot x_{j}^{2m-1} = E(x^{2m-1}) = m_{x}^{2m-1}$$

- $\sum_{j=1}^{m} P_j \cdot x_j^{2m-1} = E(x^{2m-1}) = m_x^{2m-1}$ $m_x^k (k=0,...,2m-1)$ can be calculated exactly with pdf(x).
- Assume residues $a_j = P_j$ and poles $b_j = 1/x_j$

$$\begin{bmatrix} a_1 + a_2 + \cdots + a_m \\ \frac{a_1}{b_1} + \frac{a_2}{b_2} + \cdots + \frac{a_m}{b_m} \\ \frac{a_1}{b_1^2} + \frac{a_2}{b_2^2} + \cdots + \frac{a_m}{b_m^2} \\ \vdots \\ \frac{a_1}{b_1^{2m-1}} + \frac{a_2}{b_2^{2m-1}} + \cdots + \frac{a_m}{b_m^{2m-1}} \end{bmatrix} = \begin{bmatrix} m_x^0 \\ m_x^1 \\ m_x^2 \\ m_x^2 \\ \vdots \\ m_x^{2m-1} \end{bmatrix} \longrightarrow \begin{bmatrix} m_f^k = \frac{(-1)^k}{k!} \cdot \int_{-\infty}^{+\infty} f^k \cdot p df(f) df \\ \frac{m_f^k}{k!} \cdot \int_{-\infty}^{+\infty} f^k \cdot p df(f) df \\ \approx \frac{(-1)^k}{k!} \cdot \sum_{j=1}^m P_j \cdot f(x_j)^k \end{bmatrix}$$

- system matrix is well-structured (Vandermonde matrix);
- nonlinear system can solved with deterministic method.

Extension to Multiple Parameters

 Model moments with multiple parameters as a linear combination of moments with single parameter.

$$m_{f(x_1, x_2, \dots, x_n)}^k = \sum_{i=1}^n g_i m_{f(x_i)}^k$$
$$g_i = c \cdot \frac{\partial (f(x_i))}{\partial x_i}$$
$$c = 1 / \sum_{i=1}^n \frac{\partial (f(x_i))}{\partial x_i}$$

- $f(x_1, x_2, ..., x_n)$ is the function with multiple parameters.
- $f(x_i)$ is the function where xi is the single parameter.
- g_i is the weight for moments of $f(x_i)$
- *c* is a scaling constant.

Error Estimation

- We use approximation with q+1 moments as the exact value, when investigating PDF extracted with q moments.
- When moments decrease progressively $|m_f^p| \geq |m_f^{q+1}| \; (\; p \leq q+1)$

$$m_f^k = \int_{-\infty}^{+\infty} (f^k \cdot pdf(f))df$$

$$0 < f < 1$$

$$Error \le \left| \frac{(-j\omega)^{q+1}}{(q+1)!} \cdot \left(\sum_{p=0}^{q+1} \frac{(-j\omega)^p}{p!} \right)^{-1} \right|.$$

 Other cases can be handled after shift (f<0), reciprocal (f>1) or scaling operations of performance merits.

Outline

- Backgrounds
- Existing Methods and Limitations
- Proposed Algorithms
- Experimental Results
- Conclusions

(1) Validate Accuracy: Settings

- To validate accuracy, we compare following methods:
 - Monte Carlo simulation.
 - run tons of SPICE simulations to get performance distribution.
 - PEM: point estimation based method (proposed in this work)
 - calculate high order moments with point estimation.
 - MMC+APEX:
 - obtain the high order moments from Monte Carlo simulation.
 - perform APEX analysis flow with these high-order moments.

MMC+APEX
Run Monte Carlo

PEM
Point Estimation

$$\widehat{m}_f^k = \frac{(-1)^k}{k!} \cdot \int_{-\infty}^{+\infty} f^k \cdot p df(f) df$$

Match with the time moment of a LTI system

$$\widehat{m}_f^k = \widehat{m}_t^k = -\sum_{r=1}^M \frac{a_r}{b_r^{k+1}}$$

$$h(t) = \begin{cases} \sum_{r=1}^{M} a_r \cdot e^{b_r^{k+1} \cdot t} & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

6-T SRAM Cell

- Study the discharge behavior in BL_B node during reading operation.
- Consider threshold voltage of all MOSFETs as independent Gaussian variables with 30% perturbation from nominal values.
- Performance merit is the voltage difference between BL and BL_B nodes.

Accuracy Comparison

- Variations in threshold voltage lead to deviations on discharge behavior
 - Investigate distribution of node voltage at certain time-step.
- Monte Carlo simulation is used as baseline.
- Both APEX and PEM can provide high accuracy when compared with MC simulation.

(2) Validate Efficiency: PEM vs. MC

 For 6-T SRAM Cell, Monte Carlo methods requires 3000 times simulations to achieve an accuracy of 0.1%.

 Point Estimation based Method (PEM) needs only 25 times simulations, and achieve up to 119X speedup over MC with the similar accuracy.

Method	Time (second)	Speedup
Monte Carlo (3×10^3)	7644	1x
PEM (5 point)	64.12	119.2x

Compare Efficiency: PEM vs. APEX

- To compare with APEX:
 - One Operational Amplifier under a commercial 65nm CMOS process.
 - Each transistor needs 10 independent variables to model the random variation*.

Circuit Name	Transistor#	Mismatch Variable #
SRAM Cell	~ 6	~ 60
Operational Amplifier	~ 50	~ 500
ADC	~ 2K	~ 20K
SRAM Critical Path	~ 20K	~ 200K

- We compare the efficiency between PEM and APEX by the required number of simulations.
- Linear vs. Exponential Complexity:
 - PEM: a linear function of number of sampling point and random variables.
 - APEX: an exponential function of polynomial order and number of variables.

^{*} X. Li and H. Liu, "Statistical regression for efficient high-dimensional modeling of analog and mixed-signal performance variations," in *Proc. ACM/IEEE Design Automation Conf. (DAC)*, pp. 38-43, 2008.

Operational Amplifier

- A two-stage operational amplifier
 - complexity in APEX increases exponentially with polynomial drders and number of variables.
 - PEM has linear complexity with the number of variables.

The Y-axis in both figures has log scale!

- Studied stochastic analog circuit behavior modeling under process variations
- Leverage the Point Estimation Method (PEM) to estimate the high order moments of circuit behavior systematically and efficiently.
- Compared with exponential complexity in APEX, proposed method can achieve linear complexity of random variables.

Thank you!

ACM International Symposium on Physical Design 2011

Fang Gong, Hao Yu and Lei He