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OUTLINE

- Introduction and motivation

- Projection-based descent method for solving
Lagrangian dual problem

- Distribution of Lagrangian multipliers
- Experimental results

- Conclusion




GATE IMPLEMENTATION SELECTION _

- Gate implementation options
. Size
.- P/N ratio
- threshold voltage (Vt)

- Large problem size
. commonly, hundreds of thousands of gates
. sometimes millions of gates
- Essential for circuit power and performance




PREVIOUS WORK (CONTINUOUS)

- Solved by
. Linear programming
. Convex programming
. Network flow
- Round fractional solutions to integers
- Fast
- Rounding errors
- Restrictions on delay/power models
- Difficult to handle P/N ratio unless transistor level




PREVIOUS WORK (DISCRETE)

- No rounding ervor
. Compatible with different power/delay models
. Sensitivity based heuristics
. Simple
- Quick
- Greedy
- Dynamic programming-like search
. Relatively systematic solution search




LAGRANGIAN RELAXATION (LR)

- Handle conflicting objectives or complex
constraints

- With continuous optimization

. Faster convergence (Chen, Chu and Wong, TCAD 1999)
- With dynamic programming-like search

. Alleviate the curse of dimensionality




OVERVIEW OF LR

Original problem LR subproblem

Lagrangian multiplier
Minimize A(X)

Subject to: B(x) < O ‘ Minimize A(x) + A*B(x)
C(x) <0 Subject to: C(x) £ O

Lagrangian dual problem

Find A - max optimal
solution of subproblem




LR FOR GATE IMPLEMENTATION SELECTION

Original problem

Min PF(X)
st.  a<A JePO
a+D;<a | ein( )
D <a | ePI

X: implementation decision
P: power
D: delay

a: arrival time

LR subproblem

Min P(X)+X4,(a; - A)
+Z/1ij(ai + Dij —aj)
+Z/Iio(Di _ai)




LAGRANGIAN DUAL PROBLEM

- ldeally
. a piece-wise convex function
. solved by subgradient method

- variant of steepest descent
- In practice
. no guarantee for optimal subproblem solution
- dual problem is no longer convex
- How to solve non-convex dual problem?
- not well studied



KARUSH-KUHN -TUCKER (KKT) CONDITIONS

e

ﬂ'li +ﬂ“2i +...:ﬂu“ +Ai|| + ...

Flow conservation
(Chen, Chu and Wong TCAD4 9)




PROBLEM OF SUBGRADIENT METHOD

S ’“Ckl'i) Slacks s
—_—
—_—
Slack2: 20

AA, = 5p, AA, = -20p, AA, = 5p

B

p: step size in subgradient method

A A




PROJECTION-BASED DESCENT METHOD

Subgradient
- /> Projected move direction:

smoothed historical gradient




PROJECTION ESTIMATION

- Table of (a, A) in previous iterations
- Gradient history: (a;-a;_)/(Ai- A1)
- Projection direction
. Weighted average of historical gradients
. More weight for recent gradients




STEP SIZE

- AA = (q —acur)/yl
. q: required arvival time
. a,,,. current arrvival time
- M: projected move direction




MULTIPLIER UPDATE FLOW

- Multipliers at PO are updated by projection
- They are distributed to entire circuit in reverse -
topological order
. like network flow

- Alternatively, from Pl distribute in topological
order




MULTIPLIER DISTRIBUTION

- Ensure flow conservation

- Try to equalize slack: different slacks imply room
for power saving

. Given outgoing flow, find x

Z X—di _ ZA/ljk

icin(j) i keout( j)

X IS the target arrival time

. AAU = (X“ﬂ,')/yl,'j




EXPERIMENT SETUP

- ISCAS85 benchmark

. Cell library based on 70nm technology
. Synthesized by SIS

. Placed by mPL

- Elmore delay

- Analytical power model
- LR subproblem is solved by greedy heuristic
: Cowxlqare our approach (projection+greedy) with

baseline (subgradient+greedy)




RESULTS WITH TIGHT TIMING CONSTRAINTS
e

Sub-gradient method Our method

testcase |# of gates slack power slack run time slack run time

chain 11 . -295.6 60.8 -13.9 0.0 0.1 0.4
c432 289 -10379.8 | 832.4 -33.1 0.8 0.6 1.2
c499 539 -5389.7 | 1545.4 -11.5 1.5 1.7 2.2
c880 340 -4239.1 515.5 -31.7 0.9 15.6 1.7
c1355 579 -5353.7 | 1470.0 -5.3 1.7 7.6 2.5
c1908 722 -7286.4 | 1452.7 -12.8 2.2 5.9 3.2
c2670 1082 -16177.1 | 1465.9 -32.8 2.8 9.1 4.1
c3540 1208 -7369.0 | 2650.5 -116.6 3.7 20.0 5.5
c5315 2440 -9956.3 | 3627.4 -199.0 7.4 7.8 10.9
6288 2342 -10476.1 | 6305.5 -29.4 7.6 3.4 11.4
c7552 3115 -21197.9 | 6875.7 -97.2 9.7 20.6 14.8
Sum 38.38 57.82
# of violation 11 11




RESULTS WITH LOOSE TIMING CONSTRAINTS
e

Initial Sub-gradient method Our method

testcase [# of gates slack power slack run time slack run time

chain 11 : -215.5 27.2 5.0 0.0 5.0 0.1
c432 289 -8033.3 249.8 17.0 0.8 18.0 1.1
c499 539 -4198.2 874.5 614.0 1.5 7.0 2.2
c880 340 -3219.2 327.8 231.0 0.9 1.0 1.3
c1355 579 -4084.3 736.4 38.0 1.7 3.0 2.5
c1908 722 -5716.4 878.0 22.0 2.2 70.0 3.1
c2670 1082 -12969.7 760.0 711.0 2.8 115.0 4.0
c3540 1208 -5873.4 2012.5 718.0 3.7 7.0 5.5
c5315 2440 -8156.4 3165.6 1033.0 7.4 17.0 10.8
6288 2342 -7786.7 3951.3 310.0 7.5 13.0 11.5
c7552 3115 -16899.7 | 3897.8 1386.0 9.7 107.0 14.3
Sum 16881 38.25 56.34
# of violation 11
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POWER OVER ITERATIONS (C432)
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CONCLUSIONS AND FUTURE RESEARCH

By

- Drawbacks of subgradient method are investigated

- New techniques are proposed to solve Lagrangian
dual problem for gate implementation selection

- They lead to better solutions and faster
convergence

- In future, we will integrate them with dynamic
programming -like search




Thank You!




