More Realistic Power Grid Verification Based

on Hierarchical Current and Power constraints

2Chung-Kuan Cheng, ?Peng Du, 2Andrew B. Kahng,
'Grantham K. H. Pang, '§Yuanzhe Wang, 'Ngai Wong

1. The University of Hong Kong
2. University of California, San Diego



Outline

e Background

e Problem formulation
e Efficient solver

e Experimental results
e Conclusion




Background

AN bottom layer g top layer ,N‘I via

Power grid -> RCL network

External voltage sources -> ideal voltage sources

Transistors, logic gates, etc -> ideal current sources



Background
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Power grid voltage drop verification is becoming indispensable




Background

1. Simulation-based power grid verification

capacitance admittance input distribution
inductance impedance matrix

Cx(t) + Gx(t) = Bu(t)

nodal voltages current patterns

AN bottom layer § top layer ,¢1~| via

transient analysis
current patterns > voltage drops




Background

2. Worst case power grid verification

max Voltage Drop
< Design experience

subject to: Current_Constraints . .
— Design requirements

1. Early-stage verification — current patterns unknown

2. Uncertain working modes — too many possible
current patterns

Check : max{Voltage Drop} <Noise Margin




Background

X, : hodal voltage at k
T -
MaX Xk =C I i - current sources

4 - [, : local current bounds
Uil <1, i

Su bjeCt o - | : global current bounds

\O <I<| L c : relationship between voltage and
current

U : current distribution matrix

Worst-case voltage drop prediction via solving linear
programming problems

D. Kouroussis and F. N. Najm, A static pattern-independent
technique for power grid voltage integrity verification, 2003




Background

Solving linear programs:

1. Simplex algorithm: theoretically NP-hard; O(n3) in practice.
2. Ellipsoid algorithm: O(n%)

3. Interior-point algorithm: O(n3-°)

n is usually large (> millions)

Existing work (for higher efficiency):

Geometric method -> trade-off with accuracy
(Ferzli, ICCAD ’07)

Dual algorithm -> still large complexity (convex optimization)
(Xiong, DAC ’07)
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Problem formulation

Relationship between voltage drop and currents

CX(t) + Gx(t) = Bu(t)

2 Backward Euler

C C
(G+ A_t)x(t + Al) = N X(t) + Bu(t + At)

Numerically equivalent
to transient analysis
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Problem formulation

Hierarchical current and power constraints
1: Local current constraints

0<u(t) <Ip or 0<u(kAt)<IL

2: Block-level current constraints
Uu(t) < Ilg or Uu(kAt) < lg

node i

Different from previous

: 11 3] . j'f jZ
work, U is a “0/1” matrix A
with each column
containing at most one “1”.  1ctiona L b ) ) S i
block k, block k; | P
Thlg IS the requirement [MG ;)][(Q ® ”] «— B g
of hierarchy i ni- 0 B
— e e A I
current source j; current source j, — —
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Background

3: Block-level power constraints

U (Zt: u(kAt))

current constraints => peak power constraints => area
value of current waveform under current waveform

12



Problem formulation

4: High level power constraints

k
[1° level]: (Zu kAt ) < V—tPTl

[frth level]: U, U,—_q - -- (Zu (kAt) ) < ‘l;—tPTr

Ul,U2 : ...,Ur are 0/1 matrices with each column containing at most one “1”

time steps

block current
constraints

Hierarchical viockpower | Lif—
. constraints
Constraints

|

High-level powe
constraints

current
sources | 13
u(At) u(2At) ... u((k-1)At) u(kAt)




Problem formulation

Worst-case voltage drop occurs at the final time step
(see the paper for detailed proof).

Thus the linear programming problem reads:

k¢
max z; (k:tAt) = > ¢ pu(kAt)

i€Q A

( 0 < u(kAt) < I, Uu(kAt) < Ig,
ky
U (Z u(kAt)) < ¢ Pg,

k=1

kt
U Upr_y---U (Z u(kAt)) < E-Pr(rf =1..7)

L dd

ik 1s the it row of MFtTFN

k=1

14



Outline

e Background

e Problem formulation
e Efficient solver

e Experimental results
e Conclusion

15



Efficient solver

Coefficient computation

(those i to be solved form a set’ Q)

« Solving those nodes with current sources attached
(# current sources usually < # of nodes)

« Solving those “critical nodes” which have great
influence on circuit performance

16



Efficient solver

ky—Fk

c\ ol c\ !
(G + E) ~ (0 + E) H
A parallel algorithm without matrix inversion is desired.
CT - CT —1
At (G + E)

T, cT _ 7 i CT
G" 4+ 57 = LaUqg R {{k _ HTUd_lLd_l (C_> {)T:;ILEI (—) LTJILEI e
(sparse-LU ) . Al At y

JR— _-.T
C;{ ?,I,; —_— 'E-”é.

ki —Fk

€,

cT\ ™'
transpose I =HT (GT 4 E)

T

ki —Fk times

1. Requiring one sparse-LU and k, forward/backward
substitutions

2. Parallelizable
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Efficient solver

k¢
max x;(k:At) = Y ciru(kAt) ¢ known now
1€ L—1 ’

Rename variables by treating each entry of each u(kAt)
as independent variables

- T . - T . N y
€1 = €71 Ci1; Cm = €,,Ci 1} iy = ug (At); Uy, = U (AL);

. T . . _ T o (L . =~ _ . (L

Clhy—1)ym+1 = €1 Cikes **°  Chym = €mCikei | Ug—1ymyr = Ur(KeAL); -+ Upm = Um (ke AT).

The objective function can be rewritten as

mk¢
max r; ., = E Cill;
i=1
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Efficient solver

time steps

Each constraint represents | —
that the sum of some constraints

block power

variables belonging to a e
set is smaller than a bound

High-level powe

E 7. traint
Uy E Fﬁ(f{ — :L| L :H't) constraints - -

current
sources |

1EL

u(At) uAH .. u((k-DAD) u(kAt)

e k4. the total number of constramnts. Here sy = kym +
kip+p+p1+- g

e L, : the set of indices of variables involved in the Kl
constraint;

e [,.: the bound of the i th constraint;

h
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Efficient solver

The problem is rewritten as

mk+
max ; . = ¢l s.t. E U < lo(k=1,... K¢)

i=1 =y .

The constraints here are hierarchical, which follows that for
any two sets 2., £.,, atleast one of the 3 equations holds:

Q) Ly, Loy = 0; (i) Loy C Loy ({ii) Loy D Lo,

U1
U2

hierar®

U4

®
® .
®

() ()
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Efficient solver

mks
max r; . = ¢l s.t. E U < lo(k=1,...,K¢)

=1 e Ly

Lemma: The objective function reaches maximum when
all the variables 1, s associated with negative ¢, s are
set to zero.

Intuitive interpretation:

1. The objective function is smaller when variables with
negative variables are positive;

2. Set these variables to zero will not decrease the
feasible set defined by constraints.
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Efficient Solver

Set all the variables associated with negative coefficients
as zero and sort the remaining coefficients in the
descendingorder: ¢; > --- > ¢z > 0

The problems becomes

Then it can be proven that a sorting-deletion
algorithm can give the optimal solution.

22



Efficient solver

Algorithm 1 : Sorting-deletion algorithm

fori=1,...k do
(1) Select all the sets £, that satisfy 2 € L,;. The subscripts
of these L, form a set KC;:
(2) Setu; to be min{l.|xk € K;};

| 3) ly, =¥, —u; torall k € Iy

Intuitive interpretation:

Give the variable associated with the largest coefficient
the largest possible value. Then delete this variable
from the problem and do the same procedure again.
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Efficient solver

Complexity of the sorting-deletion algorithm

1. Coefficient sorting: (using the most efficient
sorting algorithm)

O(mk, log mk,)

2. Deletion procedure: (r is the # of level in the
hierarchical structure, mk; is # of variables)

O(mk,r)
Much lower than standard algorithms

O(mk, log mk,) +O(mk,r) << O((mk,)?)
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Experimental results

Models used:

3-D power grid structure with 4 metal layers

Power grid models LP problems
Nodes (N) | Sources (m) | Matrix size (n) | No. of R’s | No. of C’s | No. of L’s | Variables | [Q]
Power grid 1 75,762 37.881 113,499 54,350 37.684 37.684 3.7TM 100
Power grid 2 980,313 490,157 146,9755 608,792 394,444 394,444 690M 100

1. Compare the voltage drop predictions with and
without power constraints

2. Compare the CPU time using sorting-deletion
algorithm and standard algorithms
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Experimental results
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Worst-case current patterns with and without power
constraints (pc’s). Introduction of power constraints may
reduce over-pessimism.
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Experimental results
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Worst-case voltage drop predictions with and without
power constraints (pc’s). Introduction of power constraints
may reduce over-pessimism.
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Experimental results

Without pe’s With pe’s

Standard method | Proposed algorithm | Speed-up | Standard method | Proposed algorithm | Speed-up

Single | Setup 9.86 sec 9.86 sec — 0.86 sec 0.86 sec —

Power | node | Solving 6.08 sec 0.71 sec (8.56x) . 0.77 sec Cinf )
grid 1 [9] Setup 901 see 901 sec oy 901 sec 901 sec iy
nodes | Solving 577 sec 70.2 sec (8.22 >9 — 76.5 sec ( inf )

Single | Setup 278 sec 278 sec Pp—q 278 sec 278 sec o

Power | node | Solving 74.4 sec 9.91 sec Q.Sl >9 ) 10.87 sec Qinf )
grid 2 €2 Setup 417 min 417 min — 417 min 417 min o~
nodes | Solving 120 min 15.4 min G.SS >9 — 1 17.1 min ( inf)

(1) Standard LP solver fails due to too many iterations

CPU time comparison between standard algorithms and

sorting-deletion algorithm. Significant speed-up is achieved.
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Conclusion

e Introduction of power constraints provide more
realistic current patterns and less pessimistic

voltage drops.

e Efficient and parallelizable coefficient
computation is proposed.

e Sorting-deletion algorithm significantly reduces
the CPU time to solve the linear programming
problems.
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