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Backgroundg

Power grid -> RCL network

External voltage sources -> ideal voltage sources
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Transistors, logic gates, etc -> ideal current sources



Backgroundg
External voltage source             power grid            transistors, logic gates, etc

Voltage+Zs Current

Voltage drop
Logic error

Voltage drop
Timing error

# Gates ↑

Current density ↑ Voltage drop ↑

Line width ↓

External voltage ↓ Noise margin ↓
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Power grid voltage drop verification is becoming indispensable



Backgroundg
1. Simulation-based power grid verification

capacitance 
inductance

admittance
impedance

input distribution 
matrix

( ) ( ) ( )Cx t Gx t Bu t 

nodal voltages current patterns

t tt lt d
transient analysis
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current patterns voltage drops



Background g
2. Worst case power grid verification

max Voltage_Drop

s bject to C rrent Constraints
Design experience

subject to: Current_Constraints Design requirements

1 E l t ifi ti t tt k1. Early-stage verification – current patterns unknown

2. Uncertain working modes – too many possible 
current patternscurrent patterns

Check : max{Voltage Drop} <Noise Margin
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Background g
xk : nodal voltage at k

i tmax Tx c i i :  current sources

IL : local current bounds

IG : global current bounds

max

subject to

k

G

x c i
Ui I




 G g

c : relationship between voltage and 
current

U : current distribution matrix

subject to
0 Li I  

U : current distribution matrix 

Worst-case voltage drop prediction via solving linear 
i bl

D. Kouroussis and F. N. Najm, A static pattern-independent 
technique for power grid voltage integrity verification 2003

programming problems
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technique for power grid voltage integrity verification, 2003



Backgroundg

Solving linear programs:

1. Simplex algorithm: theoretically NP-hard; O(n3) in practice.

2. Ellipsoid algorithm: O(n4)

3. Interior-point algorithm: O(n3.5)

n is usually large (> millions)

Existing work (for higher efficiency):

Geometric method -> trade-off with accuracy
(Ferzli, ICCAD ’07)

Dual algorithm -> still large complexity (convex optimization)
(Xi DAC ’07)
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(Xiong, DAC ’07)
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Problem formulation
Relationship between voltage drop and currents

( ) ( ) ( )Cx t Gx t Bu t 
Backward Euler

( ) ( ) ( ) ( )C CG x t t x t Bu t t
t t

      
 

Numerically equivalent 
to transient analysis
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Problem formulation
Hierarchical current and power constraints

1: Local current constraints1: Local current constraints

2 Bl k l l t t i t2: Block-level current constraints

Different from previous 
work, U is a “0/1” matrix 
with each column 

t i i t t “1”containing at most one “1”. 

This is the requirement 
of hierarchy
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Backgroundg

3: Block-level power constraints

i i

t t
current constraints => peak 
value of current waveform

power constraints => area 
under current waveform
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Problem formulation
4: High level power constraints

1 2, ,..., rU U U are 0/1 matrices with each column containing at most one “1”1 2 r

Hi hi lHierarchical 
Constraints
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Problem formulation

Worst-case voltage drop occurs at the final time step 
( th f d t il d f)(see the paper for detailed proof).

Thus the linear programming problem reads:

14



Outline

 Background Background
 Problem formulation

Effi i t l Efficient solver
 Experimental results
 Conclusion

15



Efficient solver
Coefficient computation

We do not have to solve ci,k for every i 
(those i to be solved form a set Ω)

• Solving those nodes with current sources attached• Solving those nodes with current sources attached 
(# current sources usually < # of nodes)

• Solving those “critical nodes” which have great 
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g g
influence on circuit performance



Efficient solver

A parallel algorithm without matrix inversion is desired.

transpose

1. Requiring one sparse-LU and kt forward/backward 
substitutions 
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2. Parallelizable 



Efficient solver

ci k known nowci,k known now

Rename variables by treating each entry of each u(k∆t) 
as independent variablesas independent variables

The objective function can be rewritten as
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Efficient solver

Each constraint represents p
that the sum of some 
variables belonging to a 
set is smaller than a boundset is smaller than a bound
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Efficient solver
The problem is rewritten as 

The constraints here are hierarchical which follows that forThe constraints here are hierarchical, which follows that for 
any two sets              , at least one of the 3 equations holds:  
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Efficient solver

Lemma: The objective function reaches maximum when 
all the variables associated with negative areall the variables         associated with negative        are 
set to zero.

Intuitive interpretation:Intuitive interpretation:

1. The objective function is smaller when variables with 
negative variables are positive;

2. Set these variables to zero will not decrease the 
feasible set defined by constraints.
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Efficient Solver

Set all the variables associated with negative coefficients 
d t th i i ffi i t i thas zero and sort the remaining coefficients in the 

descending order:

Th bl bThe problems becomes

Then it can be proven that a sorting-deletion 
algorithm can give the optimal solution.g g p
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Efficient solver

Intuitive interpretation:Intuitive interpretation: 

Give the variable associated with the largest coefficient 
the largest possible value. Then delete this variable 
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from the problem and do the same procedure again.



Efficient solver

Complexity of the sorting-deletion algorithm

1. Coefficient sorting: (using the most efficient 
sorting algorithm)

2. Deletion procedure: (r is the # of level in the 
hierarchical structure mk is # of variables)

( log )t tO mk mk

hierarchical structure, mkt is # of variables)

M h l th t d d l ith

( )tO mk r

Much lower than standard algorithms

 3( log ) ( ) ( )t t t tO mk mk O mk r O mk 
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Experimental resultsp

Models used: 

3-D power grid structure with 4 metal layers

1 C th lt d di ti ith d1. Compare the voltage drop predictions with and 
without power constraints

2 Compare the CPU time using sorting-deletion2. Compare the CPU time using sorting deletion 
algorithm and standard algorithms
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Experimental resultsp

Worst-case current patterns with and without power 
constraints (pc’s). Introduction of power constraints may 
reduce over-pessimism.
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Experimental resultsp

Worst-case voltage drop predictions with and without 
power constraints (pc’s). Introduction of power constraints 
may reduce over-pessimism.
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Experimental resultsp

(1) Standard LP solver fails due to too many iterations

CPU time comparison between standard algorithms and 
ti d l ti l ith Si ifi t d i hi d

(1) Standard LP solver fails due to too many iterations

sorting-deletion algorithm. Significant speed-up is achieved.
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Conclusion

 Introduction of power constraints provide more Introduction of power constraints provide more 
realistic current patterns and less pessimistic 
voltage drops.

 Efficient and parallelizable coefficient 
computation is proposed.

 Sorting-deletion algorithm significantly reduces 
the CPU time to solve the linear programming 

blproblems.
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