

E-Beam Lithography Stencil Planning and Optimization With Overlapped Characters

Kun Yuan, David Z. Pan

Dept. of Electrical and Computer Engineering
The University of Texas at Austin
http://www.cerc.utexas.edu/utda

Outline

- Introduction and Motivation
 - Electronic Beam Lithography (EBL)
 - Overlapped Characters
- EBL Stencil Planning/Optimization
 - One-Dimensional Stencil Design
 - > Two-Dimensional Stencil Design
- Experimental Results
- Conclusion

Conventional Optical Lithography

Scaling Woos

◆ Aggressive scaling of min. printable half pitch HP

$$HP = k_1 \frac{\lambda}{NA}$$

k₁: process difficulty NA: numerical aperture λ: wavelength of source

- λ is stuck at 193nm
 - ♦ k₁: limit is 0.25
 - NA = 1.5, close to the limit
 - ◆ EUV (13.5nm): Still many, many challenges!

Mask Cost !!!

Alternative solution for 32nm/22nm and below

Double Patterning

Or even triple/quadruple patterning!

But mask cost will be proportionally higher!

Electron Beam Lithography

- Maskless technology, which shoots desired patterns directly into the silicon wafer
 - 4x better resolution [Solid State Technology 2011]
 - Lower cost [D2S Inc]

The biggest challenge: Low throughput

Variable Shape Beam (VSB)

One rectangle per shot

Total number of 11 shots are needed

Character Projection (CP) Technology

 Print some complex shapes in one electronic beam shot, rather than writing multiple rectangles.

Character Projection Technology (Cont.)

Limitation of Character Projection

- The number of characters is limited due to the area constraints of the stencil
 - Various investigations [Makoto et al. SPIE'06, SPIE'09] on optimization of character selection

Overlapped Characters

 Blanking space is usually reserved around its enclosed rectangular circuit pattern

 By allowing over-lapping adjacent characters, more characters may be put on stencil [Fujimura+, 2010]

Not a Trivial Task

Problem Definition

ullet Given a set of character candidates C_{C}

$$o_{ij}^{H} = \min(r_i, l_j)$$

Each candidate C_i appears \mathcal{V}_i in the circuit

#shots by VSB: n_i^{VSB} #shots by CP: n_i^{CP}

Problem Definition (Cont.)

 \bullet Select a subset $\,C_{\!\it CP}\,$ out of character candidates $\,C_{\it C}\,$, and place them on the stencil S

Minimize total number of shots:

$$\sum_{C_i \in C_{CP}} r_i n_i^{CP} + \sum_{C_i \in C_C \setminus C_{CP}} r_i n_i^{VSB}$$

While

The placement of C_{CP} is bounded by the outline of stencil.

Stencil

One Dimensional Problem

◆ The required blanking spaces on the top t and bottom b are nearly identical for all the candidates.

Optimization Flow

One-Dimensional Bin Packing

$$\sum_{C_i \in C_{CP}} r_i n_i^{CP} + \sum_{C_i \in C_C \setminus C_G} r_i n_i^{VSP} \quad \text{Minimize}$$

$$= \sum_{C_i \in C_C} r_i n_i^{VSB} - \sum_{C_i \in C_{CP}} r_i (n_i^{VSB} - n_i^{CP})$$

$$= \text{Constant} \quad \text{Maximize}$$
Packing by the decreasing order of
$$\sum_{C_i \in C_{CP}} r_i (n_i^{VSB} - n_i^{CP})$$

Put the candidate into the row with most blacking space left

Single Row Reordering

 Adjust the relative locations of already-placed characters in each row to shrink its occupied width and increase remaining capacity

Transform to min-cost Hamiltonian path problem

Multi-Row Swapping and Inter-Stencil Tuning

Multi-Row Swapping

- Inter-Stencil Tuning
 - Exchange the placed characters with those which have not been selected

Two Dimensional Problem

- The blanking spaces of templates are nonuniform along both horizontal and vertical directions.
- Simulated Annealing Framework with Sequential Pair Representation

 $\overline{X}, \overline{Y}$ are two permutations of characters $(c_0, c_1...c_n)$

$$\overline{X} = (...c_i...c_j...), \overline{Y} = (...c_i...c_j...).$$
 c_i is left to c_j

$$\overline{X} = (...c_j...c_i...), \overline{Y} = (...c_i...c_j...).$$
 c_i is below c_j

Transformation from SP to Stencil

- Transform SP to a min-area packing solution
- Pick the candidates within outline of stencil as characters

$$\overline{X} = (E D A C B)$$

$$\overline{Y} = (A B D E C)$$

$$\overline{X} = (E \ D \ A \ C \ B)$$

$$\overline{Y} = (A B D E C)$$

Throughput-Driven Swapping

Try to reduce the projection time by swapping the positions of two candidates in the X & Y SP.

Slack-Base Insertion

 Make use of the concept of slack to find a good position to insert extra candidate into the stencil

Slack-Based Insertion

 Make use of the concept of slack to find a good position to insert extra candidate into the stencil

$$\overline{X} = (C A D B E)$$
 $\overline{X} = (E C A D B)$
 $\overline{Y} = (A C B D E)$ $\overline{Y} = (A E C B D)$

Experimental Setup

- Implemented in C++
- ◆Intel 8 Core Linux, 3.0 Ghz, 32GB
- Parquet [TVLSI 2003] is adopted as SA framework
- Compare with two baseline methods
 - ILP-based approach without overlap characters [Sugihar, SPIE 2009]
 - Greedy bin-packing algorithm with overlap characters

Benchmark

Circuit	Character Size UM × UM	Total area $1e^4um^2$	Total blanks $1e^4um^2$	Optimal area $1e^4um^2$
1D-1	3.8x3.8	1.444	0.416	1.028
1D-2	4.0x4.0	1.6	0.479	1.121
1D-3	4.2x4.2	1.764	0.514	1.25
1D-4	4.4x4.4	1.936	0.569	1.367
2D-1	3.8x3.8	1.444	0.414	1.03
2D-2	4.0x4.0	1.6	0.529	1.071
2D-3	4.2x4.2	1.764	0.662	1.102
2D-4	4.4x4.4	1.936	0.774	1.162

The area of stencil is $100um \times 100um$

1000 character candidates

One Dimensional Stencil Design

#shots (projection time)

#characters on stencil

#CPU(logscale)

 51%, 14% reduction on shot number over previous ILP-based approach without overlapping characters and greedy algorithm.

Two Dimensional Stencil Design

#shots (projection time)

#characters on stencil

#CPU(logscale)

 31%, 25% reduction on shot number over previous ILP-based approach without overlapping characters and greedy algorithm.

Conclusion

- E-Beam Lithography is a promising emerging technology for better resolution and lower cost
- Low throughput is its key hurdle
- E-beam lithography stencil planning and optimization with overlapped characters
- Lots of future research opportunities on physical design and emerging lithography
 - E-beam multi-stencil optimization problems
 - Massive parallel e-beams/characters
 - Double/triple patterning lithography
 - > EUV,

Acknowledgment

- The work is sponsored in Part by NSF, IBM Faculty Award and equipment donations from Intel
- Dr. Gi-Joon Nam at IBM Austin Research Lab for helpful discussions.

Thank you!