

Impact of Manufacturing on Routing Methodology at 32/22 nm

Alex Volkov P&R Principal Engineer

Outline

- ASIC detail router challenges at 32/22nm
 - Library density and design size
 - Complexity of DRC rules
 - DFM consideration
 - Double Pattern (DP) methodology
- Methodology Impact
 - Accuracy
 - Pre-calculation
 - Prevention

Density

- High density libraries at 32nm
 - M2 PG rails
 - M1 M2 pins
 - Dense library cells cause routing problems
- Aggressive rules
 - Modeling vias and short connections in Global Route
- Size of designs exceeds > 10M instances
 - Geographic database
 - NlogN is not enough

Density: M2 Library

- M2 PG rails and M2 pins:
 - Reduced routing resources
 - Limits possibility for pin connection

M3 stripe can cause a trap

M1 pins are in a "trap" formed by M2 rails and M3 stripe

Density: Aggressive Rules

- Global router requires precise modeling
 - Via is not a point anymore
 - Need to consider min area and EOL rules
 - Small connections in gcell affects M2/M3 resources

min area via and EOL areas

Density: Size of Designs

- Design size is a challenge
 - 30M design \rightarrow 1 Billion of wires and vias
 - Geographic database after 1M
- \blacksquare N*log(N) can be expensive for N need n*log(n)

DRC Complexity

DRC rule count

- Increase in number of rules
- Increase in number of ranges per rule

Complexity

- Actual polygon processing
- Multiple objects result in a violation
- Pessimistic and simple models do not work anymore

Various approaches

- Post processing of layout
- Integration of DRC engine with router

DRC: Number of Rules and Complexity

Manufacture uses 193nm light to print 32nm feature

DRC: Number of Rules and Complexity

■ Increase in DRC rules to address printability issues

Rule	130nm	90nm	65nm	45nm	32nm	22nm
Width-based spacing	1-2	2-3	3-4	4-5	7+	7+
Min-Area	1 pitch	1.5 pitch	1.5 pitch	2 pitch	2.5 pitch	3 pitch
Min-Step (OPC)	-	1	1	2	2	3+
End-of-Line (OPC)	-	-	1	1-2	2-3	2-3
Pinch (OPC)	-	-	-	-	4	4+
Fat Jog (OPC)	-	-	-	-	5	5+
Cut Number (Via)	-	1-2	3-4	5-6	6+	6+
Bar Via spacing	-	-	-	-	Cut-to-Cut	Cut-to-Met
Direction Rules	-	-	-	-	-	Yes
Discrete width	-	-	-	-	-	Yes
Double Patterns	-	-	-	-	-	Yes

DRC: Complexity of Verification

Complex polygon operations

- build polygon for shape
- perform 5 reshape operations
- check via enclosure vs. resulted blue contour

Multiple objects in a violation

- two wires (green) with W1 and S1 between two other wire corners (CA CB)
- if no any objects in BoxB1
 BoxB2 then OPC will create
 bridge violation

DRC: Complexity for Router

Complex shape-dependent rules is a challenge

- "Shadowing" grid points do not work
 - There are many "gray" areas around shapes where router should be accurate
 - Router should understand length dependent rules
 - Router should dynamically change solution from "history"

DRC: Complexity for Router

- Addressing complex violations
- Post processing fixing
 - Easy to implement
 - Not guaranteed
- Integration with DRC engine
 - Difficult to implement
 - Best approach

DRC: Router Integration

- Requirement for DRC/DFM closure at 32m/22nm
 - Decouple verification from core router
 - Use polygon based DRC engine
 - Integrate core router with various signoff tools

DFM Requirements

DRC clean does not mean good yield

- Any angle is the problem for manufacturing
- Any via is object for failure

Preferred routing style

- Enclose via in pin library pre-calculation
- Minimize fat shapes wire/via relations
- Minimize non-preferred direction

Various DFM approaches

- Post processing
- Concurrent routing with reservation of room
- Pins pre-calculation for DFM vias

Courtesy of ST Microelectronics

DFM: Preferred Routing Style

- Via inside of pin, short M1 connections
- Minimize fat shapes and jogs on top layers

ideal routing picture

DFM: DFM Via Approaches

Pre-calculate library for DFM

- Concurrent DFM via usage in routing
 - Many vias leads to excessive runtime
 - Aggressive via insertion leads to unrecoverable violations
 - Space reservation

Double Patterning at 20nm — Another Magnitude Increase in Complexity

- New dimension for routing tasks
 - Multiple schemes of DP
 - Non-formalized rules because DP is a synthesis process
 - Coloring is the core for DP process
 - Global conflict vs. local marker
- Various manufacturing solutions
 - Conservative to flexible
- Routing solutions
 - DRC prevention rules
 - Integration with signoff tools
 - Own coloring algorithm

DP: Problem Statement

- Create two or more masks
 - Metal line stays as CD
 - Spacing is increased to 3xCD

DP: Problem Statement

- Different DP Methodologies
 - SIT (SADP): Sidewall Image Transfer (Self Align DP)
 - LELE: litho-etch, litho-etch
 - Can be mixed in the process
 - Every Fab have their own methodology

DP: Manufacturing Dilemma

- DP methodology is still evolving
 - No experience on design side for DP conflict resolution
 - Unknown manufacturing cost and design impact
 - No agreement on the best approach

DP: Global Conflict in Routing

- DP problem is not localized as regular DRCs
 - Reroute can result in violation on another portion of the chip
 - Incremental approach is broken

DP: Global Conflict in Routing

- Conflict contour can include too many objects
 - DP detection does not tell who is the reason of violation
 - Several objects can be the reason in a big countour

DP: Routing Approach

- Prevention by DRC rules
 - Restrictions for non-preferred direction
 - Spacing depending on direction
 - Track routing only
- DP verification
 - Own coloring engine
 - Integration with signoff
- Repair of DP conflicts is still an open question

Modern Detail Router architecture

Summary

- 32/22nm technology complexity stressing traditional models, methodologies and algorithms
 - Advanced DRC
 - DFM
 - DP
- A new routing architecture is needed for predictable and efficient manufacturing closure
 - Adaptable to evolving methodologies vis-à-vis cost vs. benefit
 - Concurrent verification and design
 - Signoff driven prevention and repair

Graphics

www.mentor.com