# Obstacle-aware Clock-tree Shaping during Placement



Dong-Jin Lee and Igor L. Markov

Dept. of EECS, University of Michigan

## **Outline**

- Motivation and challenges
- Limitations of existing techniques
- Optimization objective
- Proposed techniques and methodology
  - Obstacle-aware virtual clock trees
  - Arboreal clock-net contraction force
  - Obstacle-avoidance force
  - The Lopper flow
- Empirical validation
- Conclusion

# **Physical Design Flow**

Synchronous systems consist of sequential registers (latches, flip-flops) and combinational logic



- Physical locations of registers are determined during placement
- Clock networks are built based on the physical locations of registers during Clock-network synthesis
- Placement-level optimization techniques for high-quality clock networks

# Register Placement

Quality of clock networks is greatly affected by register placement





- High-quality register placement cannot be achieved by easy pre- or post-processing
- Mainstream literature on placement focuses on wirelength of only signal nets

# Challenges

Trade-off between clock network minimization and total signal-net wirelength



- Both signal-net and clock-tree wirelength must be considered in primary placement objective
- Difficult to estimate the topology of the final clock tree during placement

# **Limitations of Existing Techniques**

Manhattan-ring guidance method\*





- Inaccurate
- Poor in the presence of obstacles (macro blocks)
- Intermediate simple clock-network estimates \*\*, \*\*\*



- Unrealistically simplified clock networks
- Bounding box based representation (HPWL)
- \*: Y. Lu et al, "Navigating Registers in Placement for Clock Network Minimization," DAC`05
- \*\*: Y. Cheon et al, "Power-Aware Placement," DAC`05
- \*\*\* : Y. Wang et al, "Clock-Tree Aware Placement Based on Dynamic Clock-Tree Building, ISCAS`07

## **Our Contribution**

- Optimization objective which captures total net-switching power
- Obstacle-aware virtual clock trees
- Arboreal clock-net contraction force
  - Switching-power minimization problem solved by wirelength-driven placer capable of net weighting
- Obstacle-avoidance force
- The Lopper flow
  - Quality control
  - Gated clocks and multiple clock domains
  - Flexible integration
- Experimental results on practical benchmarks derived from industrial circuits
  - 30% clock wirelength, 6.8% power reduction

# **Optimization Objective**

- $\mathcal{N}$ : Set of signal nets,  $\mathcal{E}$ : Set of clock-tree edges
- **Total switching power**

$$P_{sw} = P_{\mathcal{N}} + P_{\mathcal{E}}$$

- $\alpha_{n_i}$ ,  $\alpha_{e_i}$ : Signal-net and clock-edge activity factors
- $C_n$  ,  $C_e$  : per-unit capacitance of signal and clock wires
- **Total signal-net switching power**

$$P_{\mathcal{N}} = \sum_{n_i \in \mathcal{N}} \alpha_{n_i} HPW L_{n_i} C_n V^2 f$$

Total clock-net switching power

$$\left[P_{\mathcal{E}} = \sum_{e_i \in \mathcal{E}} lpha_{e_i} L_{e_i} C_e V^2 f
ight]$$
  $L_{e_i}$  : Manhattan length

# **Activity Factor**

- Activity factors of signal nets are commonly not available at placement stage
- Clock-power ratio β
  - Clock-net switching power divided by total switching power
  - Target design constraint or user-control variable
  - Affects how much a placer emphasizes clock-network reduction
- Average activity factor of signal nets based on clock-power ratio β

$$\alpha_{avg} = \frac{(1 - \beta) \sum_{e_i \in \mathcal{E}} L_{e_i} C_e}{\beta \sum_{n_i \in \mathcal{N}} HPWL_{n_i} C_n}$$

## **Obstacle-aware Virtual Clock Trees**

Challenges in clock-net optimization without obstacle handling









- Obstacle-aware virtual clock-tree
  - Traditional DME-based zero-skew clock-tree synthesis with Elmore delay model
  - Incrementally repair the clock tree to avoid obstacles
  - Represents realistic modern clock networks (Avg. 2.2% differences in capacitance on the ISPD`10 CNS benchmarks)

## **Arboreal Clock-net Contraction Force**

#### Structurally-defined forces

- To reduce individual edges of the virtual clock tree
- Virtual nodes represent branching nodes and split the clock tree into individual edges
- Create forces between clock-tree nodes and structurally transfer the forces down to registers



## **Arboreal Clock-net Contraction Force**

Two-pin net representing clock-net contraction force

$$w_{e_i} = \frac{C_e \alpha_{e_i}}{C_n \alpha_{avg}}$$

Total switching power (  $L_{e_i} = HPWL_{e_i}$  )

$$\left(\sum_{n_i \in \mathcal{N}} \alpha_{avg} HPWL_{n_i} C_n + \sum_{e_i \in \mathcal{E}} \alpha_{e_i} HPWL_{e_i} C_e\right) V^2 f$$

By substituting  $\alpha_{e_i}$  in terms of  $w_{e_i}$ 

$$\left(\sum_{n_i \in \mathcal{N}} \alpha_{avg} HPW L_{n_i} C_n + \sum_{e_i \in \mathcal{E}} \alpha_{avg} w_{e_i} HPW L_{e_i} C_n\right) V^2 f$$

From switching power minimization problem to weighted HPWL minimization problem

$$P_{sw} = P_{\mathcal{N}} + P_{\mathcal{E}} = K \sum_{m_i \in \mathcal{M}} w_{m_i} HPWL_{m_i}$$
 
$$K = \alpha_{avg} C_n V^2 f$$
 
$$w_{n_i} = 1$$
 
$$\mathcal{M} = \mathcal{N} \cup \mathcal{E}$$
 12

## **Obstacle-avoidance Force**

#### Force-modification for obstacle avoidance

- Modify clock-net contraction forces around obstacles
- Eliminate the contraction forces of obstacle-detouring edges (e<sub>4</sub>, e<sub>5</sub>)







## The Lopper Flow

Our techniques are integrated into SimPL\*



<sup>\*:</sup> M.-C. Kim et al, "SimPL: An Effective Placement Algorithm," ICCAD`10, pp.649-656

## Trade-offs and Additional Features

#### Quality control

- Trade-off between clock-net and signal-net switching power can be easily controlled with β
- Achieve intended design target without changing the algorithms or internal parameters

#### Gated clocks and multiple clock domains

 Activity factors of registers are propagated to clock edges and used for clock-net contraction forces

#### Flexible integration

- Clock-net contraction forces are represented in placement instances by virtual nodes and nets
- Lopper can integrate any obstacle-aware clock-tree synthesis technique into any iterative wirelengthdriven placer capable of net weighting

# **Empirical Validation**

#### Problems of the benchmarks used in prior work

- Inaccessible
- Unrealistically small placement instances
- No macro blocks
- Reference placement tools are outdated or self-implemented

#### New benchmark set (CLKISPD05)

- ISPD 2005 Placement Benchmark
- Directly derived from industrial ASIC designs (IBM)
- Used extensively in placement research
- 15% of cells are selected to be registers
- Largest benchmark : 2.1M cells, 327K registers
- http://vlsicad.eecs.umich.edu/BK/CLKISPD05bench

## **Experimental Setup**

- Benchmarks are mapped to Nangate 45nm open library\*
- Clock-power ratio β is set to 0.3 in the experiments based on clock power ratio of industrial circuits
- Wire specifications are derived from ISPD`10 contest\*\* and Nangate 45nm library
- Supply voltage : 1.0V
- Clock frequency : 2GHz
- Clock source : bottom left corner of core area
- Quality of clock networks is evaluated by Contango 2.0\*\*\*

<sup>\*:</sup> Nangate Inc. Open Cell Library v2009 07, http://www.nangate.com/openlibrary

<sup>\*\* :</sup> C. N. Sze, "ISPD 2010 High-Performance Clock Network Synthesis Contest: Benchmark Suite and Results," ISPD`10, pp. 143.

<sup>\*\*\* :</sup> D.-J. Lee et al, "Low-Power Clock Trees for CPUs," ICCAD`10, pp.444-451.

## **Empirical Results**

|        | SIMPL 101     |               |               | SimPL+Lopper  |       |               |          |
|--------|---------------|---------------|---------------|---------------|-------|---------------|----------|
| Bench  | ClkWL         | HPWL          | Pwr           | ClkWL         | HPWL  | Pwr           | <b>(</b> |
|        | (mm)          | (m)           | (mW)          | (mm)          | (m)   | (mW)          | (min)    |
| clkad1 | 209.1         | 8.968         | 279.9         | 152.3         | 9.233 | 263.0         | 4.30     |
| clkad2 | 223.1         | 10.54         | 297.6         | 161.0         | 10.83 | 278.4         | 7.11     |
| clkad3 | 468.5         | 24.08         | 624.7         | 326.9         | 24.90 | 583.0         | 13.4     |
| clkad4 | 519.4         | 21.70         | 692.6         | 354.4         | 22.32 | 640.4         | 14.1     |
| clkbb1 | 238.2         | 11.18         | 317.6         | 166.3         | 11.53 | 295.7         | 6.32     |
| clkbb2 | 533.2         | 16.75         | 710.9         | 371.2         | 17.26 | 661.4         | 31.9     |
| clkbb3 | 866.3         | 39.22         | 1155          | 602.2         | 40.97 | 1085          | 35.3     |
| clkbb4 | 1855          | 92.96         | 2473          | 1266          | 05.21 | 2270          | 110      |
| Avg    | $1.00 \times$ | $1.00 \times$ | $1.00 \times$ | $0.70 \times$ | 1.03× | $0.93 \times$ |          |

- 30% clock-tree wirelength reduction
- 3.1% signal-net wirelength increase
- 6.8% total wire-switching power reduction
- 2.5X slower than SimPL

# **Empirical Results**

Compared to mPL6\*

|        | MPL6  |               |               | SimPL+Lopper  |               |               |          |
|--------|-------|---------------|---------------|---------------|---------------|---------------|----------|
| Bench  | ClkWL | HPWL          | Pwr           | ClkWL         | HPWL          | Pwr           | <b>(</b> |
|        | (mm)  | (m)           | (mW)          | (mm)          | (m)           | (mW)          | (min)    |
| clkad1 | 248.2 | 9.092         | 298.3         | 152.3         | 9.233         | 263.0         | 4.30     |
| clkad2 | 267.0 | 10.74         | 318.9         | 161.0         | 10.83         | 278.4         | 7.11     |
| clkad3 | 467.6 | 24.99         | 640.8         | 326.9         | 24.90         | 583.0         | 13.4     |
| clkad4 | 615.6 | 22.62         | 751.6         | 354.4         | 22.32         | 640.4         | 14.1     |
| clkbb1 | 245.1 | 11.29         | 322.5         | 166.3         | 11.53         | 295.7         | 6.32     |
| clkbb2 | 514.1 | 17.77         | 733.6         | 371.2         | 17.26         | 661.4         | 31.9     |
| clkbb3 | 1032  | 40.15         | 1240          | 602.2         | 40.97         | 1085          | 35.3     |
| clkbb4 | 2110  | 96.77         | 2650          | 1266          | 05.21         | 2279          | 110      |
| Avg    | 1.11× | $1.03 \times$ | $1.06 \times$ | $0.70 \times$ | $1.03 \times$ | $0.93 \times$ |          |

- Our techniques produce 36.6% less ClkWL while the total signal-net HPWL is very similar
- 2.57X faster than mPL6

<sup>\*:</sup> T. F. Chan et al, "mPL6: Enhanced Multilevel Mixed-Size Placement," ISPD`06

# Example

 Clock trees for clkad1, based on a SimPL register placement (left) and produced by our method (right)



## **Other Experiments**

 Impact of excluding obstacle-aware virtual clock trees (OAVCT), obstacle avoidance forces (OAF)

|        | Orig. Flow |       | w/o OAVCT |       | w/o OAF |       |
|--------|------------|-------|-----------|-------|---------|-------|
| Bench  | ClkWL      | Pwr   | ClkWL     | Pwr   | ClkWL   | Pwr   |
|        | (mm)       | (mW)  | (mm)      | (mW)  | (mm)    | (mW)  |
| clkad1 | 152.27     | 263.0 | 165.86    | 267.8 | 158.52  | 265.3 |
| clkad2 | 161.03     | 278.4 | 170.90    | 285.5 | 163.69  | 278.7 |
| clkad3 | 326.94     | 583.0 | 362.11    | 595.1 | 340.78  | 587.4 |
| clkad4 | 354.44     | 640.4 | 403.05    | 657.2 | 379.78  | 649.4 |
| clkbb1 | 166.33     | 295.7 | 172.58    | 297.4 | 169.12  | 296.4 |
| clkbb2 | 371.18     | 661.4 | 411.24    | 673.8 | 389.92  | 666.7 |
| clkbb3 | 602.22     | 1085  | 663.10    | 1104  | 627.19  | 1093  |
| clkbb4 | 1265.5     | 2279  | 1411.8    | 2331  | 1328.1  | 2102  |
| Avg    | 1.0×       | 1.0×  | +9.5%     | +1.8% | +4.1%   | +0.7% |

Handling obstacles is important for virtual clock trees and force generation

## **Other Experiments**

Comparison to multi-level attractive force (MLAF)\*

|        | SIMPL+MLAF     |                |               |  |  |  |
|--------|----------------|----------------|---------------|--|--|--|
| Bench  | ClkWL          | HPWL           | Pwr           |  |  |  |
|        | (mm)           | ( <i>m</i> )   | (mW)          |  |  |  |
| clkad1 | 182.44 (46.9%) | 9.194 (85.3%)  | 274.2 (33.7%) |  |  |  |
| clkad2 | 200.91 (35.8%) | 10.764 (76.2%) | 293.0 (24.0%) |  |  |  |
| clkad3 | 402.46 (46.6%) | 24.713 (76.9%) | 609.8 (35.7%) |  |  |  |
| clkad4 | 449.48 (42.4%) | 22.238 (86.9%) | 676.6 (30.7%) |  |  |  |
| clkbb1 | 203.79 (47.9%) | 11.476 (84.9%) | 309.7 (36.1%) |  |  |  |
| clkbb2 | 473.77 (36.7%) | 17.161 (80.0%) | 699.3 (23.4%) |  |  |  |
| clkbb3 | 743.53 (46.5%) | 40.813 (91.0%) | 1139 (22.9%)  |  |  |  |
| clkbb4 | 1586.5 (45.5%) | 94.765 (80.2%) | 2399 (38.1%)  |  |  |  |
| Avg    | (43.5%)        | (82.7%)        | (30.6%)       |  |  |  |

- When MLAF is utilized, the amount of reduction in ClkWL is reduced to 43.5% compared to our techniques (100%)
- Only 30.6% of power reduction by our techniques can be obtained by MLAF

<sup>\*:</sup> Y. Wang et al, "Clock-Tree Aware Placement Based on Dynamic Clock-Tree Building," ISCAS`07

### Conclusion

- New techniques and a methodology to optimize total dynamic power during placement
  - For large IC designs with numerous macro blocks
  - Obstacle-aware virtual clock-tree synthesis
  - Arboreal clock-net contraction force with virtual nodes that can handle gated clocks
  - Obstacle-avoidance force modification
  - Integrated into the SimPL placer
  - A new set of 45nm benchmarks
- Our method lowers the overall dynamic power by significantly reducing clock-net switching power

## **Questions and Answers**

Thank you!!

**Questions?**