园立交通大学電子工程学系

INTEGRA：

Fast Multi－Bit Flip－Flop Clustering for
Clock Power Saving Based on Interval Graphs

IRIS HUI－RU JIANG
Chih－Long Chang
Yu－Ming Yang
Evan Yu－Wen Tsal
Lancer Sheng－Fong Chen
Nat＇I Chiao Tung Univ．I Faraday Tech Corp．

Outline

Introduction

Problem \& properties

Algorithm - INTEGRA

Experimental results

Conclusion

Clock Power Dominates!

\square Power has become one bottleneck for circuit implementation

- Clock power is the major dynamic power source
\square The clock signal toggles in each cycle \Rightarrow High switching activity
\square Clock power model: dynamic power
- $P_{\mathrm{clk}}=C_{\mathrm{clk}} V_{\mathrm{dd}}{ }^{2} \mathrm{f}_{\mathrm{clk}}$
$\square C_{\text {clk }}$: switching capacitance charged/discharged by clock

INTEGRA - ISPD'11 Clock root

Multi-Bit Flip-Flops

\square A multi-bit flip-flop (MBFF)

- Cluster several single-bit flip-flops (share the drive strength)

Bit number	1	2	4
Normalized power per bit	1.000	0.860	0.780
Normalized area per bit	1.000	0.960	0.713

Clock Power Saving using MBFFs (1/2)

\square Reduce switching capacitance charged/discharged by clock

Switching capacitance

Clock power saving

Other benefits

Clock sinks
(Flip-flops)
Clock network
(wires, clock buffers)

Small FF capacitance:
Share C into FF clock pins Share the inverter chain Small wire/buf capacitance: Regular topology and \#leaf $\downarrow \Rightarrow$ depth \downarrow \#buffer $\downarrow \quad$ easy skew control

INTEGRA - ISPD'11

Pokala et al. Physical synthesis for performance optimization. ASIC, 1992.

Clock Power Saving using MBFFs (2/2)

\square Clock power reduction can be significant

- FF clock pins, clock buffers/inverters, wires in clock network
\square Wire power overhead on data pins is small
- Wirelength on data pins << total wirelength

Prior Works on MBFF Clustering

\square Logic synthesis

- [Chen et al., SNUG-10]
\square Early physical synthesis
- [Hou et al., ISQED-09]
\square Post-placement: timing and routing
- [Yan and Chen, ICGCS-10]
- Minimum clique paritioning
- Greedy clustering
- Contiguous and infinite MBFF library
- [Chang et al., ICCAD-10]
- Window-based clustering
- Maximum independent set
- Discrete and finite MBFF library

INTEGRA

\square Since post-placement MBFF clustering is NP-hard, our goal is to solve it effectively and efficiently instead of optimally.

- Do not enumerate all possible combinations (maximal cliques)
- Do not relate to the number of layout grids/bins
- Do not manipulate on a general graph
\square Features:
- Efficient representation: a pair of linear-size sequences
- Fast operations: coordinate transformation
- Few decision points: \#decision points << \#flip-flops
- We cluster flip-flops at only decision points thus leading to an efficient clustering scheme.
- Global relationships among flip-flops: cross bin boundaries

Outline

Introduction

Problem \& properties

Algorithm - INTEGRA

Experimental results

Conclusion

The Multi-Bit Flip-Flop Clustering Problem

- Clock power saving using multi-bit flip flops
\square Given
- MBFF library
- Nelist \& Placement
- Timing slack constraints (in terms of wirelength)
- Placement density constraint
\square Find
- MBFF clustering to
- Minimize
- Clock dynamic power
- Wirelength
- Subject to
- Timing slack constraints (in terms of wirelength)
- Placement density constraints

MBFF Library

MBFF library

- Lexicographical order: <1,100,100>, <2,172,192>, <4,312,285>

Bit number	Power	Area	Normalized power per bit	Normalized area per bit
1	100	100	1.00	1.00
2	172	192	0.86	0.96
4	312	285	0.78	0.71

Placement

\square Chip area $=W_{c} H_{c}$ bins $=W H$ grids

- Flip-flops should be placed on grid (left-bottom corner)
\square Placement density constraint for bin \boldsymbol{b} :
$\square A_{f b} \leq T_{b}\left(W_{b} H_{b} A_{g}-A_{p b}\right)-A_{c b}$
- $A_{f b}$: FF area
- $A_{c b}$: Combinational logic area
- $A_{p b}$: macro area
- A_{g} : grid area
- T_{b} : target density

Timing Slack and Feasible Region

Coordinate Transformation (1/3)

- It's hard to determine if a grid point is located inside or outside the feasible region
\square Rotate 45°
clockwise; we
have rectangles instead
- Easy checking!

Coordinate Transformation (2/3)

- Coordinate transformation is done by integer operations

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = y + x } \\
{ y ^ { \prime } = y - x }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=\left(x^{\prime}-y\right) / 2 \\
y=\left(x^{\prime}+y\right) / 2
\end{array}\right.\right.
$$

Scaling factor: 1

Coordinate Transformation (3/3)

Outline

Introduction

Problem \& properties

Algorithm - INTEGRA

Experimental results

Conclusion

Overview of INTEGRA

1. Analyzes the design intent
2. Finds a decision point in X^{\prime} and extracts the essential flip-flops and their related flip-flops
3. Finds the maximal clique in the partial Y'for each essential flip-flop
4. Clusters each essential flip-flop
5. Places the clustered flip-flop at a legal location with routing cost and density consideration
6. Repeats steps $2-5$ until all flipflops are investigated

Example (1/5)

Initial

Transformed

INTEGRA - ISPD'11

Example (2/5)

- Representation

Example (2/5)
 - Representation

FF\#

Overview of INTEGRA

1. Analyzes the design intent
2. Finds a decision point in X^{\prime} and extracts the essential flip-flops and their related flip-flops
3. Finds the maximal clique in the partial Y'for each essential flip-flop
4. Clusters each essential flip-flop
5. Places the clustered flip-flop at a legal location with routing cost and density consideration
6. Repeats steps $2-5$ until all flipflops are investigated

Decision Points and Essential Flip-Flops

- Definition: If there exist two consecutive points $x_{k}{ }^{\prime}$ and x_{k+1} ' in X^{\prime}, where $x_{k}{ }^{\prime}=s_{x^{\prime}}(i), x_{k+1}{ }^{\prime}=e_{x^{\prime}}(j), 1$ $\leq i, j \leq n$, a decision point is the coordinate of x_{k+1} ', i.e., $e_{x^{\prime}}(j)$.
\square Definition: The essential flip-flops with respect to a decision point are the flip-flops whose end points ordered from this decision point to the next decision point or to the end of X^{\prime} for the last decision point.

Decision points

Decision Points and Essential Flip-Flops

- Theorem: Consider X^{\prime}, a decision point, and the corresponding essential flip-flops. The maximal clique containing the essential flipflops in x^{\prime} interval graph can be found at this decision point.
\square Corollary: A decision point corresponds to at least one essential flip-flop. Hence, the number of decision points is less than or equal to the number of flipflops.

Example (3/5)
 - Flip-Flop Clustering

X': Find candidates

Overview of INTEGRA

1. Analyzes the design intent
2. Finds a decision point in X^{\prime} and extracts the essential flip-flops and their related flip-flops
3. Finds the maximal clique in the partial Y'for each essential flip-flop
4. Clusters each essential flip-flop
5. Places the clustered flip-flop at a legal location with routing cost and density consideration
6. Repeats steps $2-5$ until all flipflops are investigated

Example (3/5)
 - Flip-Flop Clustering

X': Find candidates

Example (4/5)
 - Flip-Flop Clustering

Initial

MBFFs \& their feasible regions

Runtime Decision Points Are Few!

\square Corollary: A decision point corresponds to at least one essential flip-flop. Hence, the number of decision points is less than or equal to the number of flip-flops.
\square Runtime decision points \leq initial decision points
\square Runtime decision points are shifted because of removed flipflops.

Initial decision points

X'	Type	S	S		5	S	S	S	e	S	e	e	e	S	e	e	e	e	e
	FF\#	0			5	1	3	7	1	4	0	4	2	6	7	3	5	5	6

Runtime decision points

Overview of INTEGRA

1. Analyzes the design intent
2. Finds a decision point in X^{\prime} and extracts the essential flip-flops and their related flip-flops
3. Finds the maximal clique in the partial Y'for each essential flip-flop
4. Clusters each essential flip-flop
5. Places the clustered flip-flop at a legal location with routing cost and density consideration
6. Repeats steps $2-5$ until all flipflops are investigated

Legal Grid Points

\square Place MBFFs at legal grid points.
\square A legal grid point satisfies the following conditions:

- It is a grid point.
- It is not occupied by other gates or flip-flops.
- It is density-safe.

Flip-Flop Placement

\square Goal: Find a legal placement with wirelength consideration

- Optimal location: Within the bounding box of median coordinates of fanin and fanout gates

Example (5/5)
 - Flip-Flop Placement

Initial

Placed MBFFs

Procedure of INTEGRA

```
Algorithm INTEGRA
// Initialization
1. lexicographically sort the MBFF library
2. collapse MBFFs
3. \(X^{\prime} \leftarrow \operatorname{sort}\left\{s_{x^{\prime}}(i), e_{x^{\prime}}(i): i=1 . . n\right\}, j \leftarrow 1, Q \leftarrow \varnothing\)
// Main body
4. while ( \(X^{\prime}\) is not empty) do
5. find a decision point in \(X^{\prime}\)
6. \(\quad Q \leftarrow Q+\) essential flip-flops and related flip-flops
7. \(\quad Y^{\prime} \leftarrow \operatorname{sort}\left\{s_{y^{\prime}}(i), e_{y^{\prime}}(i): i \in Q\right\}\)
8. foreach essential flip-flop \(k\) do
        // Flip-flop clustering
9. \(\quad K_{\max } \leftarrow \max \_c l i q u e\left(Y^{\prime}, k\right)\)
10. find the appropriate MBFF cell of bit number \(B\) for \(\left|K_{\max }\right|\)
11. \(\quad K_{\text {max }} \leftarrow \operatorname{sort}\left\{e_{\chi^{\prime}}(i): i \in K_{\text {max }}-\{k\}\right\}\)
12. \(\quad K_{j}^{\max } \leftarrow\) flip-flop \(k\) and the first \((B-1)\) flip-flops in \(K_{\max }\)
    \(/ /\) Flip-flop placement
13. find bounding box \(B_{b}\) for \(K_{j}\)
14. project \(B_{b}\) 's corner and center points to \(F_{r}\left(K_{j}\right)\)
15. find the projected point with min distance between \(B_{b}\) and \(F_{r}\left(K_{j}\right)\)
16. legalize this point and assign it to MBFF \(K_{j}\)
17. if legalization fails then go to line 9
18. \(\quad Q \leftarrow Q-K_{j}, X^{\prime} \leftarrow X^{\prime}-K_{j}\)
19. \(j++\)
```


Outline

Introduction

Problem \& properties

Algorithm - INTEGRA

Experimental results

Conclusion

Comparison
 - Post-Placement MBFF Clustering

Circuit	\#FFs	Chip size (\#Grids)	Initial	
			Power	Wirelength
C1	120	600×600	11,384	89,425
C2	480	1,200×1,200	46,404	348,920
C3	1,920	2,400×2,400	185,616	1,395,680
C4	5,880	4,200×4,200	566,972	4,290,655
C5	12,000	6,000×6,000	1,160,100	8,723,000
C6	192,000	24,000 $\times 24,000$	18,561,600	139,568,000

Circuit	Lower bound		Modified Yan\&Chen			Chang et al.			INTEGRA			
	Power ratio	WL ratio	Power ratio	WL ratio	Time (s)	Power ratio	WL ratio	Time (s)	Power ratio	WL ratio	\#Dec	Time (s)
C1	82.2\%	48.7\%	82.8\%	123.0\%	0.03	85.2\%	91.7\%	< 0.01	82.8\%	96.4\%	28	< 0.01
C2	80.7\%	49.9\%	81.2\%	124.8\%	0.11	83.1\%	94.7\%	0.02	80.9\%	102.0\%	90	< 0.01
C3	80.7\%	49.9\%	81.3\%	125.2\%	0.53	82.9\%	94.8\%	0.07	80.8\%	103.6\%	229	< 0.01
C4	80.9\%	49.7\%	81.5\%	124.7\%	2.55	83.2\%	94.5\%	0.23	81.0\%	104.1\%	458	0.02
C5	80.7\%	49.9\%	81.3\%	124.2\%	8.01	82.9\%	94.9\%	0.52	80.7\%	104.8\%	690	0.05
C6	80.7\%	49.9\%	81.3\%	124.4\%	1994.61	82.8\%	94.9\%	76.94	80.7\%	105.3\%	3,007	1.11
Avg. ratio	+0.00\%		+0.60\%		358.61	+2.36\%		16.87	+0.17\%		12\%	1.00

Clock network

INTEGRA
Chang et al.
library cells (Bit-number, power, area): $(1,100,100),(2,172,192),(4,312,285)$

Chang et al. Post-placement power optimization with multi-bit flip-flops. ICCAD, 2010.
Yan and Chen. Construction of constrained multi-bit flip-flops for clock power reduction. ICGCS, 2010.

Comparison
 - MBFF Clustering at Logic Synthesis

Comparison
 - MBFF Clustering at Logic Synthesis

RISC32 CPU	Chen et al.	Ours
\# Single-bit FFs	3,689	75
\# Dual-bit FFs	2,155	3.962
FF replacement rate	53.88%	99.06%
\# Clock tree leaves	5,844	4.037
Clock tree synthesis report		
Normalized dynamic power for combinational ckt	1.000	1.009
Normalized dynamic power for clock buffers	1.000	0.789
Normalized dynamic power for FFs	1.000	0.933
\# Clock subtrees	157	150
\# Clock buffers	165	110
Depth of clock tree	5	5

1. RISC32 CPU: gate count 120k, 7999 flip-flops.
2. 55 nm process; power supply voltage is 0.9 V ; the target clock skew is 300 ps .
3. MBFF library: 1-bit FF, 2-bit FF

Conclusion

\square INTEGRA is a fast post-placement multi-bit flip-flop clustering algorithm for clock power saving.

- Based on coordinate transformation and interval graphs, we adopt a pair of linear-size sequences as the representation.
- The concept of decision points helps us significantly reduce the times of clustering applied.
- Compared with prior work applying MBFF clustering at postplacement and early design stages, our results show the superior efficiency and effectiveness of our algorithm.

国立交通大学電子工程学系

40

Thank You！

Contact info：
Iris Hui－Ru Jiang huiru．jiang＠gmail．com

41
 Backup Slides

INTEGRA - ISPD'11

Timing Issue

\square Timing slack setting:

- Timing budgeting avoids dynamic interference among multi-bit flip-flops.
- Update the feasible regions of timing related FF's once an MBFF is formed
- Scanning sequence X^{\prime} from left to right
\square Timing safety
- STA approval.
- For the Synopsys Liberty library, the delay of a gate, lumped with its output wire delay, is dominated by its output loading.

$$
C(i)=C_{W}(i)+C_{O}(i)+\sum_{g_{j} \in F O\left(g_{i}\right)} C_{I}(j),
$$

\square Since the placement of combinational elements is unchanged during post-placement MBFF clustering, the timing slack between a flip-flop and its fanin/fanout gate depends on only the wire loading, i.e., the Manhattan distance between them.

Placement Issue

\square Placement density constraint

- MBFF consume less area
- Density constraint becomes looser and looser during MBFF clustering
\square Legalization?
- Easy and doable

Maximal Clique in Y^{\prime}

- Find maximal cliques in some region in Y^{\prime}
- Find decision points
- Compare their cardinalities
\square Scan Y^{\prime} from the starting point of the essential flip-flop found in 5 X ' to its end point.
\square Count the size
- $s:+1$
- e: -1
- Largest partial sum

