

Outline

- Introduction
- Problem Formulation
- Algorithms
- Experimental Results
- Conclusions

Outline

- Introduction
- Problem Formulation
- Algorithms
- Experimental Results
- Conclusions

Flip-Flop Merging

- Merge several 1-bit Flip-Flops into a Multibit Flip-Flop (MBFF)
 - Eliminate some inverters and area
 - Reduce the # clock sinks

Flip-Flop Merging

Two traditional 1-bit flip-flops

Reduction of clock sinks

Related Work

- [15] Post-placement power optimization with multi-bit flip-flops, ICCAD'10
- The objective of [15] is to minimize the total FF Power
 - However, our objective function is to minimize the # clock sinks and switching power of signal nets

Wirelength of Signal Nets

 Different merging solutions will affect the wirelength and switching power of signal nets differently

Post-Placement Relocation

- After merging, we need to relocate these MBFFs
 - It will affect the total switching power of signal nets

Outline

- Introduction
- Problem Formulation
- Algorithms
- Experimental Results
- Conclusions

Problem Formulation

- Inputs
 - A preplaced design and a MBFF Library
- Objectives
 - Minimize the # sinks in clock network
 - Minimize the switching power of signal nets

$$\omega \times \frac{\text{Final \#sinks}}{\text{Original \#sinks}} + (1 - \omega) \times \frac{\sum_{net_i \in F} \alpha_i \times \text{Final } WL_i}{\sum_{net_i \in F} \alpha_i \times \text{Original } WL_i}$$

a; is the switching rate of signal nets

Constraints

- Guarantee there is no timing violation
 - Feasible region of FFs
- Control the placement density
 - Maintain the quality of legalization
 - Consider routing congestion

Feasible Region of a FF

Slack = Maximum allowed delay - D_{AB} Slack_A = Slack_B = Slack / 2

Feasible Region of a FF (cont.)

Outline

- Introduction
- Problem Formulation
- Algorithms
- Experimental Results
- Conclusions

Intersection Graph

- Get the feasible regions of all FFs
- The intersection of feasible regions can be represented by an intersection graph

Feasible regions of flip-flops A~E

Design Flow

Find all the Maximal Cliques

- Finding all the maximal cliques is NPC in general graph
 - However, it can be solved in polynomial time in the rectangle intersection graph
 - Solve by the sweep line algorithm

MBFF Extraction

- We want to extract the MBFFs by clique partitioning
 - Clique partitioning is a NP-Hard problem
- Different extraction strategies will affect
 - The number of clock sinks
 - The wirelength of signal nets

MBFF Extraction (cont.)

- Cost of creating MBFF β
 - \bullet D(β): the merging possibility of FFs in β
 - B(β): the # bits of β
 - ullet Switching power of signal nets connected to eta

$$cost(\beta) = \lambda \times \frac{\mathcal{D}(\beta)}{\mathcal{B}(\beta)} + (1 - \lambda) \times \frac{\sum_{net_i \in Net(\beta)} \alpha_i \times \text{Estimated } WL_i}{\sum_{net_i \in Net(\beta)} \alpha_i \times \text{Original } WL_i}$$

a; is the switching rate of signal nets

Example of Extraction Algorithm

- Assume we have 1/2/4-bit MBFF in library
- There are two maximal cliques
- Random sampling 1, 2 or 4 of FFs from c₁, c₂
 - $\mathbf{o} \ \beta_1 = \{1, 2, 3, 6\}, \ \beta_2 = \{4, 6\}$
- $cost(\beta_1) < cost(\beta_2) => select \beta_1$
 - Re-sampling $\beta_1' = \{7\}$ from c_1
- $cost(\beta_2) < cost(\beta_1')$
 - FF6 already covered
 - Re-sampling $\beta_2' = \{4, 5\}$ from C_2
- Final Extraction $\{\beta_1, \beta_2', \beta_1'\}$

MBFF Relocation

• For a MBFF β , we want to minimize the switching power of its signal nets

$$\min \sum_{net_i \in Net(\beta)} \alpha_i \times WL_i$$

a; is the switching rate of signal nets

 We can formulate it as a weighted median problem

MBFF Relocation (cont.)

MBFF Relocation (cont.)

Because of bin density constraints, some
MBFFs cannot be placed in preferred region

Outline

- Introduction
- Problem Formulation
- Algorithms
- Experimental Results
- Conclusions

Experimental Setup

- Implemented in C++
- Work on Linux with 2.13GHz CPU
- We have 9 test cases
 - r1~r5 from [22] Exact Zero-Skew
 - t0~t3 from 2010 CAD contest of Taiwan
 - Random generate switching rates 5%~15%

Experimental Results

 Reduction of clock sinks and wirelength of clock tree

Test	$\#\mathrm{FF}$			FF area	Clock tree WL(nm)			Run
cases	original	final	reduction	reduction	original	final	reduction	time(s)
r1	267	101	62.17%	3.30%	1325183	930661	29.77%	1.53
r2	598	223	62.70%	3.38%	2621623	1781824	32.03%	5.91
r3	862	298	65.42%	3.47%	3357327	2184565	34.93%	6.98
r4	1903	592	68.89%	3.56%	6839628	4185940	38.79%	28.20
r5	3101	921	70.29%	3.63%	10145960	6002024	40.84%	51.62
t0	120	37	69.16%	3.58%	39637	22545	43.12%	0.03
t1	60000	15040	74.93%	3.75%	3981765	1955086	50.89%	1053.12
t2	5524	1525	72.39%	3.68%	985348	543020	44.89%	1.98
t3	953	246	74.18%	3.73%	201755	102271	49.39%	1.14
avg.			68.90%	3.56%			40.51%	

Experimental Results (cont.)

 Reduction of wirelength and estimated switching power of nets connected to FFs

Test		$\sum_{net_i \in F} WL$	i Vi	$\sum_{net_i \in F} \alpha_i \times WL_i$			
cases	original	final	reduction	original	final	reduction	
r1	1743703	1756925	-0.75%	179802	176664	1.74%	
r2	3930879	3732569	5.04%	400928	370500	7.58%	
r3	5672241	5191913	8.46%	574642	511426	11.00%	
r4	12616681	12066921	4.35%	1266302	1187960	6.18%	
r5	20528314	19012768	7.38%	2061324	1856472	9.93%	
t0	83285	74365	10.71%	8755	7482	14.53%	
t1	53624875	33077705	38.31%	5356145	3157927	41.04%	
t2	3562985	2099595	41.07%	357151	204907	42.62%	
t3	576710	448090	22.30%	58576	43931	25.00%	
avg.			15.21%			17.74%	

Comparison with [15]

 Our algorithm can be modified to target the objectives of [15]

Test	#FFs		[15]		Ours			
cases		FF Power Red.	HPWL Red.	Run time(s)	FF Power Red.	HPWL Red.	Run time(s)	
c1	98	14.8%	8.7%	0.01	15.64%	8.2%	0.01	
c2	423	16.9%	5.3%	0.04	17.52%	11.1%	0.05	
c3	1692	17.1%	5.2%	0.10	17.41%	11.5%	0.22	
c4	5129	16.8%	5.5%	0.28	17.07%	11.5%	0.72	
c5	10575	17.1%	5.1%	0.60	17.29%	13.4%	1.89	
c6	169200	17.2%	5.1%	78.92	17.52%	11.8%	36.12	
avg.		16.65%	5.82%		17.03%	11.25%		

Conclusions

 We present a power-driven flip-flop merging and relocation approach to reduce the switching power consumption of the entire circuit A&O

• Thanks for your attention