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Floorplanning for Multi-core ProcessorsFloorplanning for Multi core Processors

SUN Niagara-3 processor

 Identical modules are placed in arrays
 One array can be embedded in another array
 R d  bl k   b  l d ithi   
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 Random blocks can be placed within an array



Symmetry Constraint in Analog Circuit LayoutSymmetry Constraint in Analog Circuit Layout

 Similar to symmetry constraint in analog design Similar to symmetry constraint in analog design
 For sequence-pair (α,β), block A and B is symmetry-

feasible if for any block A and B

αA
-1  < α B-1 ↔ β δ(B)

-1  < β δ (A)
-1

1. αA
-1 denotes the position of block A in sequence α

2. δ(A) is block symmetric to A

2 3
1 4

(1234,1234)
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(1234,1234)



Regularity Constraint vs  Symmetry ConstraintRegularity Constraint vs. Symmetry Constraint

 Regularity constraint can be treated as an extension to 
symmetry constraint symmetry constraint 

 However, the number of implicit symmetry constraints 
can be quite large

symmetry regularity
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Regularity Constraint FactorizationRegularity Constraint Factorization

 A chip with m cores can be placed in a p×q array: 
e.g. m=24=3×8=4×6=6×4=8×3

 For specific factorization, symmetries for different axes 
d  b  i i dneed to be maintained
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Array and Non-array BlocksArray and Non array Blocks

 A  p i   b t f bl k  th t t b  l d  Array group is a subset of blocks that must be placed 
in a regular array

 If a block is in an array group it is an array block If a block is in an array group, it is an array block
 Otherwise called non-array block

1

2 7

4

5Non-array block: 7
Array block: 1,2,3,4,5,6

2

3

7 5

6

Non array block: 7
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Problem FormulationProblem Formulation
 Objective: 

Minimize cost=(1-λ)×area + λ×wirelength

Constraints: 
(1) Regularity Constraint(1) Regularity Constraint
(2) Allow non-array block in the array group

λ is a weighting factor
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Algorithm OverviewAlgorithm Overview
 Using simulated annealing algorithm with sequence-pair 

representationrepresentation
 Key contribution: 

1. How to encode the regularity constraint in         g y
sequence-pair
2. How to achieve the regularity in packing procedure
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Sequence PairSequence Pair

 A sequence-pair like (<… i … j …>,<… i … j …>)  A sequence pair like ( … i … j … , … i … j … ) 
implies that block i is to the left of block j

 A sequence-pair like (<… i … j …>,<… j … i …>) 
implies that block i is above block j

1

2
4 5

3 6

(<124536>,<362145>)
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Common SubsequenceCommon Subsequence
 Definition 1: Common Subsequence

A set of q blocks b1, b2 b form a common subsequence [Tang,  TianA set of q blocks b1, b2… bq form a common subsequence [Tang,  Tian
and Wong, DATE 2000] in a sequence-pair (α,β) if α1

-1 < α2
-1 < …< αq

-1

and β1
-1 < β2

-1 < … < βq
-1

where α -1 (β -1 ) indicates the position of block b  in sequence α(β)where αi (βi ) indicates the position of block bi in sequence α(β)

0

1

3

4
sequence pair (<0 3 1 4 2 5>,<2 5 1 4 0 3>)

1

2

4

5
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Reversely Common SubsequenceReversely Common Subsequence

 Definition 2: Reversely Common Subsequence Definition 2: Reversely Common Subsequence
A set of q blocks b1, b2…bq form a reversely common subsequence in a 
sequence-pair (α,β) if α1

-1 < α2
-1 < …< αq

-1 and β1
-1 > β2

-1 > … > βq
-1

where αi
-1 (βi

-1 ) indicates the position of block bi in sequence α(β)

0

1

3

4sequence pair (<0 1 2 3 4 5>,<2 1 0 5 4 3>)

2 5
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Necessary ConditionNecessary Condition

 Lemma 1 The necessary condition that m blocks lead to a 
 fl l  h   bl k     p×q array floorplan: the m blocks constitute p common 

subsequences of length q or vise versa

0

1

3

4

0

1

3

41

2

4

5

1

2

4

5
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Regularity Subsequence-pairRegularity Subsequence pair
 Definition 3: Regularity subsequence-pair(RSP) 

A contiguous subsequence of length m that satisfies Lemma 1 in a A contiguous subsequence of length m that satisfies Lemma 1 in a 
sequence-pair is called regularity subsequence-pair

0 3The right figure can be represented as either 
(<0 3 1 4 2 5>  <2 5 1 4 0 3>)  

1 4

(<0 3 1 4 2 5>, <2 5 1 4 0 3>) or 
(<0 1 2 3 4 5>, <2 1 0 5 4 3>) 

2 5

15



Row (Column)-based Regularity Subsequence-pairRow (Column) based Regularity Subsequence pair
 Definition 4: Row (column) based regularity subsequence-pair 

is a regularity subsequence-pair where each (inversely) g y q p ( y)
common subsequence corresponding a row (column) is 
contiguous

0 3

column based regularity subsequence-pair
1

2

4

5

(<0 1 2 3 4 5>,<2 1 0 5 4 3>)

g y q p

row based regularity subsequence-pair

(<0 3 1 4 2 5>,<2 5 1 4 0 3>)
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Non-array Block in Regularity Subsequence-pairNon array Block in Regularity Subsequence pair

 Rule 1: A non-array block
• Allowed: between both or neither of sequences of a regularity • Allowed: between both or neither of sequences of a regularity 

subsequence pair
• Disallowed: between any one sequence but outside of the other

0
For example: in the right figure, we do not allow 

(<0 1 2 8 3 4 5> <8 2 1 0 5 4 3>)
1

2 3

(<0 1 2 8 3 4 5>,<8 2 1 0 5 4 3>)

4
8

17

5



Non-array Block in Common SubsequenceNon array Block in Common Subsequence
 Rule 2: A non-array block 
• Allowed: inside both or neither of a contiguous (reversely) common • Allowed: inside both or neither of a contiguous (reversely) common 

subsequence in a row (column) base regularity subsequence-pair
• Disallowed: within one common subsequence, but outside that one 

in another sequence.
0 3

8block 8 inside common subsequence

1 4

q
(<0 8 1 2 3 4 5>,<2 1 8 0 5 4 3>)

2 5
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Packing MethodsPacking Methods

 Longest Path Algorithm [Murata  Fujiyoshi  Nakatake Longest Path Algorithm, [Murata, Fujiyoshi, Nakatake
and Kajitani, TCAD 1996]

 Longest Common Sequence (LCS)  [Tang  Tian and  Longest Common Sequence (LCS), [Tang, Tian and 
Wong, DATE 2000]

 In this work, we adopt the LCS approach In this work, we adopt the LCS approach
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Packing with RegularityPacking with Regularity

 Regularity implies the alignment and spacing constraints: 
Array blocks must be horizontally (vertically) aligned

 Math expression:  Math expression: 
Xi,j - Xi,j-1 = Xi,j+1 - Xi,j

Yi j -Yi 1 j = Yi+1 j -Yi jYi,j Yi-1,j  Yi+1,j Yi,j

1.     where X, Y are x and y coordinates of the                         
lower-left corner of an array block 

2.     i(j) represents row (column) index
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Regularity IllustrationRegularity Illustration

a

Xi j - Xi j-1 = Xi j+1 - Xi j
b

i,j i,j-1 i,j+1 i,j
Yi,j -Yi-1,j = Yi+1,j -Yi,j
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Column-based and Row-based EncodingColumn based and Row based Encoding
 Column-based and Row-based encoding are both 

needed.needed.

Column based

Row based

22



Packing ProcessPacking Process

 If there is no non-array block inside an array, the array 
can be packed with longest common sequence directly

 If there is any non-array block inside an array, decided 
the minimum uniform spacing, then call longest 
common sequence and restore to original dimensionscommon sequence and restore to original dimensions
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Packing ExamplePacking Example
 Example:

Virtual Width

0 3

1 4

6
10

8

2 5

7 9Virtual Height

2 5
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Swapping Array BlocksSwapping Array Blocks
 Array blocks have same dimensions
 Swapping array blocks:  Swapping array blocks: 
• No effect on area

• Reduce wirelength

0 3 3 0

1 4 1 5

2 5 2 4
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The Floorplanning AlgorithmThe Floorplanning Algorithm
Random factorization for all array groups

Generate sequence pairs satisfying Lemma 1

Simulated annealing moves

Packing and evaluating cost

YesSwap 
blocks Swapping blocks

No

Yes

No

Finish

No Min 
Temp

Yes
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Simulated Annealing MovesSimulated Annealing Moves

 Changing the factorization of an array group Changing the factorization of an array group
 Changing the regularity sequence-pair for an array 

group between row-based and column-basedg p
 Moving a non-array block into (or outside) a regularity 

subsequence-pair
 Swapping two non-array blocks
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Experiment SetupExperiment Setup
 Compared with a manual prefix method
 Prefix method: preplaced array blocks then run simulated  Prefix method: preplaced array blocks then run simulated 

annealing for non-array blocks
 Go through all prefix factorizations, pick the best to compare
 Slightly modifications to the MCNC and GSRC benchmarks
 Experiment environment: 

(1) Implemented in C++ 
(2) Performed on a Windows OS
(3) 2 5GHz Intel core 2 Duo and 2 GB memory(3) 2.5GHz Intel core 2 Duo and 2 GB memory
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Wirelength and Area-driven ResultsWirelength and Area driven Results

MCNC benchmark, λ=0.5. Our approach can reduce wirelength by 22% on average 
M h l  h  h    l   d l  f  Meanwhile, achieving the same or less area and mostly faster runtime

MCNC M l P fi (MP) O  A hMCNC
Circuit

Manual Prefix(MP) Our Approach
Min cost

array
Area(mm2) Wirelength

(mm)
CPU(s) Area(mm2) Area 

reduction 
vs. MP

Wirelength
(mm)

Wirelength 
reduction 

vs. MP

CPU(s)

Apte 4*1 48.21 628.5 19.6 48.21 0% 472.3 24.8% 22.0

Hp 1*4 10.65 344.8 30.5 9.67 9.2% 279.4 18.9% 27.2

Xerox 1*4 25 74 1061 1 144 6 25 45 1 1% 687 5 32 3% 102 0Xerox 1 4 25.74 1061.1 144.6 25.45 1.1% 687.5 32.3% 102.0

Ami33 4*2 1.22 83.9 525.8 1.19 2.5% 77.9 7% 474.3

Ami49 4*4 50.85 2095.3 1931.5 49.53 2.6% 1559.5 25.5% 1354.6
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Area vs. WirelengthArea vs. Wirelength

11.5

HP
1.6

Ami33
Area Area

Manual Prefix Manual Prefix 
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Wirelength Wirelength
Our Approach

Our Approach

Manual Prefix 

9.5
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Area-driven ResultsArea driven Results
We also compared the two approaches for area-driven only formulation with 

GSRC benchmark

Circuit Total No. of 
blocks

No. of 
array 
blocks

Manual Prefix Our Approach

Min area 
arrays

Area 
Usage(%)

CPU(s) Area 
Usage(%)

CPU(s)

Apte 9 4 4*1 95.56 32.52 96.56 3.20

Hp 10 4 2*2 90.63 22.59 90.64 16.41

Xerox 11 4 1*4 96.71 14.07 97.13 29.87

Ami33 33 8 2*4 94.63 379.74 95.42 331.30

Ami49 49 16 8*2 93.69 713.98 93.80 231.3

n50 50 16,12 4*4,4*3 88.06 71.367 93.05 42.89

n70 70 24,9 4*6,3*3 87.02 149.45 90.53 465.1

n100 100 36,10 6*6,2*5 90.16 461.33 92.20 259.3

n200 200 56,21 7*8,7*3 84 11 3016 45 92 89 5007 4

32

n200 200 56,21 7 8,7 3 84.11 3016.45 92.89 5007.4

n300 300 81,40 9*9,10*4 86.25 5429.79 89.82 6370.9



An ExampleAn Example

Floorplan of n100 generated by our approach and manual prefix methodFloorplan of n100 generated by our approach and manual prefix method
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Conclusion and Future ResearchConclusion and Future Research

 A floorplanning approach under regularity constraint 
 I  f t  t d  th  t ti  lik  TCG  In future, study other representations like TCG 
 Performance under fixed-outline constraint
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Other Floorplan RepresentationsOther Floorplan Representations

2

4

5

7

8

9

2
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1 3

4 7

6

9
1 3

4 7

6

9

1

•Tree-based Representation
•Sequence Pair Representation
•TCG Representation 1

3 2

9

6

4

5

(215439876,123459678)

6 5

7

8
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