
Regularity-Constrained Floorplanning Regularity Constrained Floorplanning
for Multi-Core Processors

Xi Chen Jiang Hu Ning Xu

Department of ECE
Texas A&M University

College of CST
Wuhan University of Technology

1

OutlineOutline

 Introduction
Fl l i i h R l i C i Floorplanning with Regularity Constraint

 Experimental Results
C ncl si ns and F t re ResearchConclusions and Future Research

2

Floorplanning for Multi-core ProcessorsFloorplanning for Multi core Processors

SUN Niagara-3 processor

 Identical modules are placed in arrays
 One array can be embedded in another array
 R d bl k b l d ithi

3

 Random blocks can be placed within an array

Symmetry Constraint in Analog Circuit LayoutSymmetry Constraint in Analog Circuit Layout

 Similar to symmetry constraint in analog design Similar to symmetry constraint in analog design
 For sequence-pair (α,β), block A and B is symmetry-

feasible if for any block A and B

αA
-1 < α B-1 ↔ β δ(B)

-1 < β δ (A)
-1

1. αA
-1 denotes the position of block A in sequence α

2. δ(A) is block symmetric to A

2 3
1 4

(1234,1234)

4

(1234,1234)

Regularity Constraint vs Symmetry ConstraintRegularity Constraint vs. Symmetry Constraint

 Regularity constraint can be treated as an extension to
symmetry constraint symmetry constraint

 However, the number of implicit symmetry constraints
can be quite large

symmetry regularity

5

Regularity Constraint FactorizationRegularity Constraint Factorization

 A chip with m cores can be placed in a p×q array:
e.g. m=24=3×8=4×6=6×4=8×3

 For specific factorization, symmetries for different axes
d b i i dneed to be maintained

6

OutlineOutline

 Introduction
Fl l i i h R l i C i Floorplanning with Regularity Constraint

 Experimental Results
C ncl si ns and F t re ResearchConclusions and Future Research

7

Array and Non-array BlocksArray and Non array Blocks

 A p i b t f bl k th t t b l d  Array group is a subset of blocks that must be placed
in a regular array

 If a block is in an array group it is an array block If a block is in an array group, it is an array block
 Otherwise called non-array block

1

2 7

4

5Non-array block: 7
Array block: 1,2,3,4,5,6

2

3

7 5

6

Non array block: 7

8

Problem FormulationProblem Formulation
 Objective:

Minimize cost=(1-λ)×area + λ×wirelength

Constraints:
(1) Regularity Constraint(1) Regularity Constraint
(2) Allow non-array block in the array group

λ is a weighting factor

9

Algorithm OverviewAlgorithm Overview
 Using simulated annealing algorithm with sequence-pair

representationrepresentation
 Key contribution:

1. How to encode the regularity constraint in g y
sequence-pair
2. How to achieve the regularity in packing procedure

10

Sequence PairSequence Pair

 A sequence-pair like (<… i … j …>,<… i … j …>)  A sequence pair like (… i … j … , … i … j …)
implies that block i is to the left of block j

 A sequence-pair like (<… i … j …>,<… j … i …>)
implies that block i is above block j

1

2
4 5

3 6

(<124536>,<362145>)

11

(124536 , 362145)

Common SubsequenceCommon Subsequence
 Definition 1: Common Subsequence

A set of q blocks b1, b2 b form a common subsequence [Tang, TianA set of q blocks b1, b2… bq form a common subsequence [Tang, Tian
and Wong, DATE 2000] in a sequence-pair (α,β) if α1

-1 < α2
-1 < …< αq

-1

and β1
-1 < β2

-1 < … < βq
-1

where α -1 (β -1) indicates the position of block b in sequence α(β)where αi (βi) indicates the position of block bi in sequence α(β)

0

1

3

4
sequence pair (<0 3 1 4 2 5>,<2 5 1 4 0 3>)

1

2

4

5

12

Reversely Common SubsequenceReversely Common Subsequence

 Definition 2: Reversely Common Subsequence Definition 2: Reversely Common Subsequence
A set of q blocks b1, b2…bq form a reversely common subsequence in a
sequence-pair (α,β) if α1

-1 < α2
-1 < …< αq

-1 and β1
-1 > β2

-1 > … > βq
-1

where αi
-1 (βi

-1) indicates the position of block bi in sequence α(β)

0

1

3

4sequence pair (<0 1 2 3 4 5>,<2 1 0 5 4 3>)

2 5

13

Necessary ConditionNecessary Condition

 Lemma 1 The necessary condition that m blocks lead to a
 fl l h bl k p×q array floorplan: the m blocks constitute p common

subsequences of length q or vise versa

0

1

3

4

0

1

3

41

2

4

5

1

2

4

5

14

(<0 3 1 4 2 5>,<2 5 1 4 0 3>) (<0 1 2 3 4 5>,<2 1 0 5 4 3>)

Regularity Subsequence-pairRegularity Subsequence pair
 Definition 3: Regularity subsequence-pair(RSP)

A contiguous subsequence of length m that satisfies Lemma 1 in a A contiguous subsequence of length m that satisfies Lemma 1 in a
sequence-pair is called regularity subsequence-pair

0 3The right figure can be represented as either
(<0 3 1 4 2 5> <2 5 1 4 0 3>)

1 4

(<0 3 1 4 2 5>, <2 5 1 4 0 3>) or
(<0 1 2 3 4 5>, <2 1 0 5 4 3>)

2 5

15

Row (Column)-based Regularity Subsequence-pairRow (Column) based Regularity Subsequence pair
 Definition 4: Row (column) based regularity subsequence-pair

is a regularity subsequence-pair where each (inversely) g y q p (y)
common subsequence corresponding a row (column) is
contiguous

0 3

column based regularity subsequence-pair
1

2

4

5

(<0 1 2 3 4 5>,<2 1 0 5 4 3>)

g y q p

row based regularity subsequence-pair

(<0 3 1 4 2 5>,<2 5 1 4 0 3>)

16

Non-array Block in Regularity Subsequence-pairNon array Block in Regularity Subsequence pair

 Rule 1: A non-array block
• Allowed: between both or neither of sequences of a regularity • Allowed: between both or neither of sequences of a regularity

subsequence pair
• Disallowed: between any one sequence but outside of the other

0
For example: in the right figure, we do not allow

(<0 1 2 8 3 4 5> <8 2 1 0 5 4 3>)
1

2 3

(<0 1 2 8 3 4 5>,<8 2 1 0 5 4 3>)

4
8

17

5

Non-array Block in Common SubsequenceNon array Block in Common Subsequence
 Rule 2: A non-array block
• Allowed: inside both or neither of a contiguous (reversely) common • Allowed: inside both or neither of a contiguous (reversely) common

subsequence in a row (column) base regularity subsequence-pair
• Disallowed: within one common subsequence, but outside that one

in another sequence.
0 3

8block 8 inside common subsequence

1 4

q
(<0 8 1 2 3 4 5>,<2 1 8 0 5 4 3>)

2 5

18

Packing MethodsPacking Methods

 Longest Path Algorithm [Murata Fujiyoshi Nakatake Longest Path Algorithm, [Murata, Fujiyoshi, Nakatake
and Kajitani, TCAD 1996]

 Longest Common Sequence (LCS) [Tang Tian and  Longest Common Sequence (LCS), [Tang, Tian and
Wong, DATE 2000]

 In this work, we adopt the LCS approach In this work, we adopt the LCS approach

19

Packing with RegularityPacking with Regularity

 Regularity implies the alignment and spacing constraints:
Array blocks must be horizontally (vertically) aligned

 Math expression:  Math expression:
Xi,j - Xi,j-1 = Xi,j+1 - Xi,j

Yi j -Yi 1 j = Yi+1 j -Yi jYi,j Yi-1,j Yi+1,j Yi,j

1. where X, Y are x and y coordinates of the
lower-left corner of an array block

2. i(j) represents row (column) index

20

Regularity IllustrationRegularity Illustration

a

Xi j - Xi j-1 = Xi j+1 - Xi j
b

i,j i,j-1 i,j+1 i,j
Yi,j -Yi-1,j = Yi+1,j -Yi,j

21

Column-based and Row-based EncodingColumn based and Row based Encoding
 Column-based and Row-based encoding are both

needed.needed.

Column based

Row based

22

Packing ProcessPacking Process

 If there is no non-array block inside an array, the array
can be packed with longest common sequence directly

 If there is any non-array block inside an array, decided
the minimum uniform spacing, then call longest
common sequence and restore to original dimensionscommon sequence and restore to original dimensions

23

Packing ExamplePacking Example
 Example:

Virtual Width

0 3

1 4

6
10

8

2 5

7 9Virtual Height

2 5

24

Swapping Array BlocksSwapping Array Blocks
 Array blocks have same dimensions
 Swapping array blocks:  Swapping array blocks:
• No effect on area

• Reduce wirelength

0 3 3 0

1 4 1 5

2 5 2 4

25

The Floorplanning AlgorithmThe Floorplanning Algorithm
Random factorization for all array groups

Generate sequence pairs satisfying Lemma 1

Simulated annealing moves

Packing and evaluating cost

YesSwap
blocks Swapping blocks

No

Yes

No

Finish

No Min
Temp

Yes

26

Finish

Simulated Annealing MovesSimulated Annealing Moves

 Changing the factorization of an array group Changing the factorization of an array group
 Changing the regularity sequence-pair for an array

group between row-based and column-basedg p
 Moving a non-array block into (or outside) a regularity

subsequence-pair
 Swapping two non-array blocks

27

OutlineOutline

 Introduction
Fl l i i h R l i C i Floorplanning with Regularity Constraint

 Experimental Results
C ncl si ns and F t re ResearchConclusions and Future Research

28

Experiment SetupExperiment Setup
 Compared with a manual prefix method
 Prefix method: preplaced array blocks then run simulated  Prefix method: preplaced array blocks then run simulated

annealing for non-array blocks
 Go through all prefix factorizations, pick the best to compare
 Slightly modifications to the MCNC and GSRC benchmarks
 Experiment environment:

(1) Implemented in C++
(2) Performed on a Windows OS
(3) 2 5GHz Intel core 2 Duo and 2 GB memory(3) 2.5GHz Intel core 2 Duo and 2 GB memory

29

Wirelength and Area-driven ResultsWirelength and Area driven Results

MCNC benchmark, λ=0.5. Our approach can reduce wirelength by 22% on average
M h l h h l d l f Meanwhile, achieving the same or less area and mostly faster runtime

MCNC M l P fi (MP) O A hMCNC
Circuit

Manual Prefix(MP) Our Approach
Min cost

array
Area(mm2) Wirelength

(mm)
CPU(s) Area(mm2) Area

reduction
vs. MP

Wirelength
(mm)

Wirelength
reduction

vs. MP

CPU(s)

Apte 4*1 48.21 628.5 19.6 48.21 0% 472.3 24.8% 22.0

Hp 1*4 10.65 344.8 30.5 9.67 9.2% 279.4 18.9% 27.2

Xerox 1*4 25 74 1061 1 144 6 25 45 1 1% 687 5 32 3% 102 0Xerox 1 4 25.74 1061.1 144.6 25.45 1.1% 687.5 32.3% 102.0

Ami33 4*2 1.22 83.9 525.8 1.19 2.5% 77.9 7% 474.3

Ami49 4*4 50.85 2095.3 1931.5 49.53 2.6% 1559.5 25.5% 1354.6

30

Area vs. WirelengthArea vs. Wirelength

11.5

HP
1.6

Ami33
Area Area

Manual Prefix Manual Prefix

9 5
10

10.5
11

1.2

1.4

Wirelength Wirelength
Our Approach

Our Approach

Manual Prefix

9.5

250 300 350
1

75 80 85 90 95

Xerox A i49

g Wirelength

26
26.5

27

Xerox

60

70

80
Ami49Area Area

Manual Prefix Manual Prefix

25
25.5

26

600 800 1000 1200
40

50

60

Wirelength
Wirelength

Our Approach

Our Approach

31

600 800 1000 1200
1500 2000 2500 3000 3500

Area-driven ResultsArea driven Results
We also compared the two approaches for area-driven only formulation with

GSRC benchmark

Circuit Total No. of
blocks

No. of
array
blocks

Manual Prefix Our Approach

Min area
arrays

Area
Usage(%)

CPU(s) Area
Usage(%)

CPU(s)

Apte 9 4 4*1 95.56 32.52 96.56 3.20

Hp 10 4 2*2 90.63 22.59 90.64 16.41

Xerox 11 4 1*4 96.71 14.07 97.13 29.87

Ami33 33 8 2*4 94.63 379.74 95.42 331.30

Ami49 49 16 8*2 93.69 713.98 93.80 231.3

n50 50 16,12 4*4,4*3 88.06 71.367 93.05 42.89

n70 70 24,9 4*6,3*3 87.02 149.45 90.53 465.1

n100 100 36,10 6*6,2*5 90.16 461.33 92.20 259.3

n200 200 56,21 7*8,7*3 84 11 3016 45 92 89 5007 4

32

n200 200 56,21 7 8,7 3 84.11 3016.45 92.89 5007.4

n300 300 81,40 9*9,10*4 86.25 5429.79 89.82 6370.9

An ExampleAn Example

Floorplan of n100 generated by our approach and manual prefix methodFloorplan of n100 generated by our approach and manual prefix method

33

Conclusion and Future ResearchConclusion and Future Research

 A floorplanning approach under regularity constraint
 I f t t d th t ti lik TCG  In future, study other representations like TCG
 Performance under fixed-outline constraint

34

ThanksThanks

35

Other Floorplan RepresentationsOther Floorplan Representations

2

4

5

7

8

9

2

4

5

7

8

9
1 3

4 7

6

9
1 3

4 7

6

9

1

•Tree-based Representation
•Sequence Pair Representation
•TCG Representation 1

3 2

9

6

4

5

(215439876,123459678)

6 5

7

8

36

