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Modern Processor Design - Power7

— g — " Core

* 4,6 or 8 cores per chip
* 4 SMT threads per core
¢ 10+ execution units per core:

5 April 2011 © 2011 IBM Corporation
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Motivation

= Bridging the Gap:

Design Difficulty per Transistor

50k
250k
500k
RLM
1m LBS
Days

Semi-Custom

Full-Custom

= Driving Higher Productivity
— 10x difference in # transistors per designer for RLM vs Dataflow
— Need improved automation tools because of growing costs
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= Reason: Sub Optimality on Dataflow Macros

— Area: generate less dense designs

— Delay: present 10%-20% reduction post routed delays
— Power: 20%-30% increase in power for similar delays

Months

v

Design Effort per Time
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Goals

= Often claimed that current placement tools do not perform well on datapath designs

= BUT WHY?? AND HOW MUCH?? Is it the...
— Regular structure?
— Highly compact layouts?

= GOAL: Compare State-of-the-art placement tools against manual placement on REAL
designs

— Is placement the problem or is it something else?

= This work:
— Presents two custom constructed datapath designs that perform common logic functions
— Presents hand-designed layouts for each to compare the “known optimal solution”
— Compares latest generation of academic placers against them
— Testcases released publically

5 5 April 2011 © 2011 IBM Corporation
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What's Different?

= There have been past attempts to quantify suboptimality of placement heuristics

— Hagen, et al. [7]
* Copy small circuits and replicate them
* Loosely connecting their ports together, in order to create a much larger benchmark.

* Problems
— Defined connections between the copies do not correspond to real logic functions.
— No pin locations are defined for the circuit

— PEKO/PEKU Benchmarks - Chang, et al.

* Placement examples with known optima (PEKO)

* Placement examples with known upperbounds (PEKU)

* Optimality achieved by adding nets to cells in configurations that cannot be shortened.
* though the pin distributions of cells matched that of a typical VLSI circuit.

* Problems
— these netlists did not correspond to any logic function at all.
— It could be argued that the PEKO and PEKU testcases are artificially hard

= What is Needed:
— Need real logic function
— Need to now how close placers are to optimal

6 5 April 2011 © 2011 IBM Corporation
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What is Dataflow Design?

Logic Function Types:

— Load / Store queue — Adders
— Decoders — Muxes
— Encoders — Latch Banks for Buses

— Crossbar Switch ~ Memories / CAMs

Many designs have regular datapaths, placers have no regular structure
Placement failures: high utilization, irregular shapes

Gate Sizing: Larger wire lengths cause increased gate sizes

Routing: Difficult to route even they are placed

Let’s look at some examples...

5 April 2011 © 2011 IBM Corporation
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Dataflow Example 1: Fixed Latches

<«— Latch Rows

= Select Lines Share Routing Tracks 1 Dataflow Bit Stack
= Bitstack Compressed to Save Area/ Routing - Select Line Buffers
= >30% Area Growth

Input / Output Pins Lined up to Reduce Integration Level Congestion

= Custom Solution:
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= Placed Solution:
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Dataflow Example 2: Unfixed Latches

= Impact
— To achieve similar wire length:
— Area: >40%
— Timing: >20%

= Why Fixed Latches?

— Provide “hints” to the placer for
improved results

— Improve clock routing
— QOverall timing is better

— Unfixed more Unstable ->
multiple tool flows

9 5 April 2011 © 2011 IBM Corporation
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Dataflow Examples: Design 3

= Custom Placement

Util = 95%

Meets Timing

Design Time: 14-18 weeks
Highly Stable

Automated Placement

Util < 70%

Routing Congestion Problems

Larger WL drives more power, larger gate sizes
~40% Area Growth

Design Time: 6-8 weeks

5 April 2011 © 2011 IBM Corporation
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Dataflow Examples: Design 4

= Custom Placement
— Util > 95%, Meets Timing
— Compact Placement, careful whitespace usage
— Design Time: 8-12 Weeks

whitespace

Automated Placement

— Util < 70%, Timing Critical

— Larger WL drives more power, larger GW
— ~30% Area Growth

— Design Time: 2-4 Weeks

5 April 2011 © 2011 IBM Corporation
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Why are Placers Bad?

= Generally speculated that poor performance of placers on
datapath designs is due to very tight density constraints

= Perhaps placers could find the right structures but simply had
trouble with the legalization?

= Experiment:

— Two dataflow designs built —
— Eight variants of each created . Tt
€ — &td €+20 e+nod
e Additional whitespace inserted “{ B{
oL H

* Provides more opportunity for

the placers
Total Cell Height: n=a + +ne

12 5 April 2011 © 2011 IBM Corporation
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How Were They Built?

= Generally, Custom Design uses a Different Library

" Implemented Common Dataflow Structures

— Custom Design Environment

— Used Standard Cell Library
* Manually Placed Custom
= Converted Layout Netlist to Bookshelf Format
= Compared Wire Length between Manual and Placed Solutions

= Let’s take a look at the designs...

13 5 April 2011 © 2011 IBM Corporation
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Design 1: Rotator (Barrel Shifter)

" Rotate circuits
— Also known as cyclic shifters

— A simple and common bit operation

" Found throughout

® microprocessors,
* cryptography,

* imaging,

* biometrics

= Traditionally, custom designed because of

* Highly regular structure
* Significant routing complexity (local and global)

14 5 April 2011 © 2011 IBM Corporation
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Design 1: Logical Overview

K[i,j] = r[i] & K[i-1 , j] + ! r[i] & K[ i-1 , j + 2i] = Example:
where i= 0,..,m-1,j=1,..,n-1 — d:01110101
K[i, ]=K[i,j+z*n], wherezisO0,1,2, .., — R:101
— S:10101110
msh Isb
d[O] d[l] d[2] d[n-l] d[O] 0 1 2 3 4 5 6 7
,/ ol1|l1l2]o0]1 1
r[0] 7 7 7 7 7 7 7 7
/ ---- ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
] - k[0,n-1+2] 1l1]12lo]l1]lol1]o0f«e1
B R A S S SR NN
r[m-1] '/ ) KIm-2,n- ] 1l1l1]ol1lofl1]o0leo
l I”” ____I/
S[O] S[l] _______ S[n-l] 1 0 1 0 1 1 1 0 1
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Design 1 Placement

Logical Design
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Highlighted rows:

Helps track changes between
manual solution and placed solution

Highlights areas of suboptimality
Observations

Clustering impact high in areas of
more available whitespace
Ex: Red stack highly segmented

Legalization an issue in areas of
little whitespace

Ex: Left green stack
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Design 2: Structured Trees such as AND/OR Logic

= Logic 101...
— Load/Store Queue (simple memory)
— Content Addressable Memories CAM i
101 XX 00 [ port= A
— Greater than/Less than 0110x} 0! »| 01 | port=B
) ) 011 XX| searchresult |10 | port=C
— Basic ALU Operations 100 11 11 | port=D
= Common structure repeated regularly - dmt Sy Ompmtmzﬂs
= Standard cells can be interchanged to match
any of these functions
, D A | B?
Any 1's? All 1's? oes A equa
A[0] A[O] A[0]

Al1] ALL] B[O]

A2] :)_,}' ALl AlL]

A3] :.:.;'7 (1]
Al4] P ﬁ{j} ] — i[%] N

AlS) | i (2]
AlE] - A6 AL
Al7] Al7] B[3]

OR_REDUCE(A[0:7]) AND_REDUCE(A[0:7]) A[0:3] == B[0:3]
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Design 2: Placement

= Replicable with

— Large OR-trees
— Large AND-trees

— Compare Logic

Logical Design

1 sulil

= Characteristics

— Many global

connections between
each bit stack

— Few local connections

19
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Design 2 Bit Stack
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Design 2 Placement Continued

= Custom design verses automatic placement

= Results:
— Clustering causes logic to clump together
— Timing and Congestion increase in the process of being quantified
— Placement unaware of logical partitions

— Currently: Fixed Latches Improve Overall Placement Results

5 April 2011 © 2011 IBM Corporation
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Errata to Published Benchmarks

= Goal: generate an end to end benchmark flow solving the dataflow design problem

= Changes

— Added Clocking Signals

* reduces HPWL Ratio because latches are fixed
* Needed for future timing work

— Pin Locations and Pin Count:

* Improved Placement
* Improved Pin Count, more pins for a flatter netlist

— Simplification — Removed some control logic to focus on datapath placement
* Why?
— Ongoing Research Quantifying Other Areas of Suboptimality

* Routing
* Power
* Delay

= Published at:
— Special thanks to Professor Igor Markov

21 5 April 2011 © 2011 IBM Corporation
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Results: Base Case
— Design 1 — Design 2

* Most placers generate overlaps

* ntuPlace3 Aborted

* CAPO: best overall HPWL

* Most placers generate overlaps
e Overall better than design 1
* ntuPlace3: best overall HPWL

Design 1 Design 2
Run Run
Placer TWL TWL Ratio | Time (s) TWL TWL Ratio | Time (s)
Custom 11000365 1.00 n/a 8642097 1.00 n/a
Capo 15945589* 1.45* 1453.9 |[14381067* 1.66* 1430.6
mPL6 18290965* 1.66* n/a n/a n/a n/a
ntuPlace3 n/a n/a n/a 11110251* 1.29* 533.0
APlace* n/a n/a n/a n/a n/a n/a
Dragon 52926316 4.81* 2350.18 | 34711167 4.02* 2692.0
FastPlace | 16336840* 1.49* 194.9 n/a n/a n/a

= * Completed with Overlaps
= ntuPlace3: Aborts during global placement for Design 1

= n/a: Did not complete

22 5 April 2011 © 2011 IBM Corporation



Results: Whitespace
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Design 1 Test Cases

* * generated overlaps
e ntuPlace3 Aborted
e CAPO: best overall HPWL

Design 2 Test Cases
* Best HPWL seen at 10% to
15% whitespace

e ntuPlace3: best overall
HPWL

Whitespace 925 | 89.0 | 858 | 828 | 80.1 | 774 | 74.0 | 71.9
Capo 1.45*% | 1.49* [1.24*|1.28*| 1.14* |1.18*[1.12* [1.11*
mPL6 1.66* | 1.65* | 1.64*|1.66*| 1.64* |1.63*[1.76* [1.73*
ntuPlace3 - - - - - - - -
aPlace - - - - - - - -
Dragon 481 | 500 [ 539|588 | 583 [ 591 | 6.56 | 7.37
FastPlace 1.49* | 1.33* [1.31*|1.30*| 1.27* [ 1.27* | 1.29* | 1.30*
\Whitespace 955 | 936 (895|853 | 815 | 781 | 75.2 |72.2
Capo 1.66* | 1.24* |1.17*|1.18* | 1.18* | 1.20* | 1.20* |1.21*
MPL6 - 1.19* [1.15*| 1.72* | 1.15* | 1.16* |1.17*|1.18*
ntuPlace3 129*| 112 | 114 ] 113 | 1.20 | 1.15 | 1.16 | 1.24
aPlace - - - - - - - -
Dragon 402 | 424 | 449 | 481 | 509 | 533 | 5.60 | 5.93
FastPlace - 126 | 115|115 | 117 | 119 | 120 |1.21
5 April 2011 © 2011 IBM Corporation
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Future Work

= High Density Legalization

— High utilization of datapath design difficult to solve
efficiently

= Routing Aware Placement
— Easy to pack, hard to route
= Structural Analysis
— Understanding logic structure can improve results
— How do we quickly evaluate the logical structure?
= Datapath Extraction
— Datapath Components in Traditional Random Logic

— Simultaneous Optimization of Both Styles

24 5 April 2011
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