| IBM Austin

Quantifying Academic Placer Performance on
Custom Designs

Datapath Placement Benchmarks

Samuel Ward and Earl Swartzlander The University of Texas at Austin

David A. Papa, Zhuo Li,
Cliff Sze, and Charles Alpert IBM Austin Research

© 2011 IBM Corporation

l|'
h
| Ili
"l]
n

| ISPD 2011

Outline

= Background

= Motivation

= What is Dataflow or Structured Placement Design?
= Dataflow Circuit Design Examples

= Structured Placement Benchmark A

= Structured Placement Benchmark B

" Errata to the Paper

= Results

2 5 April 2011 © 2011 IBM Corporation

| ISPD 2011

Modern Processor Design - Power7

— g — " Core

* 4,6 or 8 cores per chip
* 4 SMT threads per core
¢ 10+ execution units per core:

5 April 2011 © 2011 IBM Corporation

| ISPD 2011

Motivation

= Bridging the Gap:

Design Difficulty per Transistor

50k
250k
500k
RLM
1m LBS
Days

Semi-Custom

Full-Custom

= Driving Higher Productivity
— 10x difference in # transistors per designer for RLM vs Dataflow
— Need improved automation tools because of growing costs

w
i
| Ili
"l]
In

= Reason: Sub Optimality on Dataflow Macros

— Area: generate less dense designs

— Delay: present 10%-20% reduction post routed delays
— Power: 20%-30% increase in power for similar delays

Months

v

Design Effort per Time

5 April 2011

© 2011 IBM Corporation

1
|
1
T
n

| ISPD 2011

Goals

= Often claimed that current placement tools do not perform well on datapath designs

= BUT WHY?? AND HOW MUCH?? Is it the...
— Regular structure?
— Highly compact layouts?

= GOAL: Compare State-of-the-art placement tools against manual placement on REAL
designs

— Is placement the problem or is it something else?

= This work:
— Presents two custom constructed datapath designs that perform common logic functions
— Presents hand-designed layouts for each to compare the “known optimal solution”
— Compares latest generation of academic placers against them
— Testcases released publically

5 5 April 2011 © 2011 IBM Corporation

| ISPD 2011

What's Different?

= There have been past attempts to quantify suboptimality of placement heuristics

— Hagen, et al. [7]
* Copy small circuits and replicate them
* Loosely connecting their ports together, in order to create a much larger benchmark.

* Problems
— Defined connections between the copies do not correspond to real logic functions.
— No pin locations are defined for the circuit

— PEKO/PEKU Benchmarks - Chang, et al.

* Placement examples with known optima (PEKO)

* Placement examples with known upperbounds (PEKU)

* Optimality achieved by adding nets to cells in configurations that cannot be shortened.
* though the pin distributions of cells matched that of a typical VLSI circuit.

* Problems
— these netlists did not correspond to any logic function at all.
— It could be argued that the PEKO and PEKU testcases are artificially hard

= What is Needed:
— Need real logic function
— Need to now how close placers are to optimal

6 5 April 2011 © 2011 IBM Corporation

l|'
h
| Ili
"l]
In

| ISPD 2011

What is Dataflow Design?

Logic Function Types:

— Load / Store queue — Adders
— Decoders — Muxes
— Encoders — Latch Banks for Buses

— Crossbar Switch ~ Memories / CAMs

Many designs have regular datapaths, placers have no regular structure
Placement failures: high utilization, irregular shapes

Gate Sizing: Larger wire lengths cause increased gate sizes

Routing: Difficult to route even they are placed

Let’s look at some examples...

5 April 2011 © 2011 IBM Corporation

| ISPD 2011

1
|
1
T

Dataflow Example 1: Fixed Latches

<«— Latch Rows

= Select Lines Share Routing Tracks 1 Dataflow Bit Stack
= Bitstack Compressed to Save Area/ Routing - Select Line Buffers
= >30% Area Growth

Input / Output Pins Lined up to Reduce Integration Level Congestion

= Custom Solution:

|

el B
Sfenly
-1
Sianl

I
v

Par

N Wi
BT

.

A 4

’ [[[

= Placed Solution:

e S e el e e B = = e eE 5= B e

Ranmmm — | — EEFEEEEy= = e >
§:= =|:—:| 1 _E___ZI !_: I E:. = %_%;——
'E%E%E ;;iz = = = fzféz- == == == ;Ez%f, |

1 m w - P

8 5 April 2011 © 2011 IBM Corporation

il
1|i
i

—

-

- —
—

:

| ISPD 2011

Dataflow Example 2: Unfixed Latches

= Impact
— To achieve similar wire length:
— Area: >40%
— Timing: >20%

= Why Fixed Latches?

— Provide “hints” to the placer for
improved results

— Improve clock routing
— QOverall timing is better

— Unfixed more Unstable ->
multiple tool flows

9 5 April 2011 © 2011 IBM Corporation

| ISPD 2011

Dataflow Examples: Design 3

= Custom Placement

Util = 95%

Meets Timing

Design Time: 14-18 weeks
Highly Stable

Automated Placement

Util < 70%

Routing Congestion Problems

Larger WL drives more power, larger gate sizes
~40% Area Growth

Design Time: 6-8 weeks

5 April 2011 © 2011 IBM Corporation

| ISPD 2011

Dataflow Examples: Design 4

= Custom Placement
— Util > 95%, Meets Timing
— Compact Placement, careful whitespace usage
— Design Time: 8-12 Weeks

whitespace

Automated Placement

— Util < 70%, Timing Critical

— Larger WL drives more power, larger GW
— ~30% Area Growth

— Design Time: 2-4 Weeks

5 April 2011 © 2011 IBM Corporation

| ISPD 2011

Why are Placers Bad?

= Generally speculated that poor performance of placers on
datapath designs is due to very tight density constraints

= Perhaps placers could find the right structures but simply had
trouble with the legalization?

= Experiment:

— Two dataflow designs built —
— Eight variants of each created . Tt
€ — &td €+20 e+nod
e Additional whitespace inserted “{ B{
oL H

* Provides more opportunity for

the placers
Total Cell Height: n=a + +ne

12 5 April 2011 © 2011 IBM Corporation

| ISPD 2011

How Were They Built?

= Generally, Custom Design uses a Different Library

" Implemented Common Dataflow Structures

— Custom Design Environment

— Used Standard Cell Library
* Manually Placed Custom
= Converted Layout Netlist to Bookshelf Format
= Compared Wire Length between Manual and Placed Solutions

= Let’s take a look at the designs...

13 5 April 2011 © 2011 IBM Corporation

| ISPD 2011

Design 1: Rotator (Barrel Shifter)

" Rotate circuits
— Also known as cyclic shifters

— A simple and common bit operation

" Found throughout

® microprocessors,
* cryptography,

* imaging,

* biometrics

= Traditionally, custom designed because of

* Highly regular structure
* Significant routing complexity (local and global)

14 5 April 2011 © 2011 IBM Corporation

| ISPD 2011

1
|
1
=i

Design 1: Logical Overview

K[i,j] = r[i] & K[i-1 , j] + ! r[i] & K[i-1 , j + 2i] = Example:
where i= 0,..,m-1,j=1,..,n-1 — d:01110101
K[i,]=K[i,j+z*n], wherezisO0,1,2, .., — R:101
— S:10101110
msh Isb
d[O] d[l] d[2] d[n-l] d[O] 0 1 2 3 4 5 6 7
,/ ol1|l1l2]o0]1 1
r[0] 7 7 7 7 7 7 7 7
/ ---- ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
] - k[0,n-1+2] 1l1]12lo]l1]lol1]o0f«e1
B R A S S SR NN
r[m-1] '/) KIm-2,n-] 1l1l1]ol1lofl1]o0leo
l I”” ____I/
S[O] S[l] _______ S[n-l] 1 0 1 0 1 1 1 0 1

15 5 April 2011 © 2011 IBM Corporation

| ISPD 2011

Design 1 Placement

Logical Design

r[0]

d[o]

rf1]

r[m-1]

s[0]
Physical Design
Rotate
Row 1| Pl
p-2 :
_n-2 E -
Vertical -
Buffer .
Placement Signals e,[0] to e,[n-1]
Channel vy \
-
1
0
16

1
|
1
=i

d1] d[2] d[n-1] d[0] Bit Stack Launch Latch
/7
, "1 N
’ dil rfi] di+1] r[i] —»
T enli] >
k[0,n-1+2]
g afl efl| |,
: 1 k[m-2,n-1+ 2™ ; .
- | : |
- _——— Complex | /, | v
Subcell ! A /
_______ ¥
s[1] s[n-1] s[j]
8-bit Rotate Complex Subcell
Bit Stack
/ s[0] s[1] s[2]| s[8] s[4 s[S] s[6] @ s[7]
1 t ottt ¢ ¢t ¢t
= EElF b fllee—il — 1 and | and [ex[2]
Bit Stack : f e "' = Ee ‘:' = ' mux | mux e r[2]
01 2. ' = and | and [en[1]
at — - mux [mux e r[1]
E el and | and « ei[0]
< r[i] - | mux [mux (e r[0]
L a-{ - "
1 1 lat lat
! Horizontal Buffer !
Y Placement Channel Y . .
1 1
do] d[1] d2] d[3] d[4] d[5] d[6] d[7]

5 April 2011

© 2011 IBM Corporation

Highlighted rows:

Helps track changes between
manual solution and placed solution

Highlights areas of suboptimality
Observations

Clustering impact high in areas of
more available whitespace
Ex: Red stack highly segmented

Legalization an issue in areas of
little whitespace

Ex: Left green stack

| ISPD 2011

I
I
I
nl]
I

Design 2: Structured Trees such as AND/OR Logic

= Logic 101...
— Load/Store Queue (simple memory)
— Content Addressable Memories CAM i
101 XX 00 [port= A
— Greater than/Less than 0110x} 0! »| 01 | port=B
)) 011 XX| searchresult |10 | port=C
— Basic ALU Operations 100 11 11 | port=D
= Common structure repeated regularly - dmt Sy Ompmtmzﬂs
= Standard cells can be interchanged to match
any of these functions
, D A | B?
Any 1's? All 1's? oes A equa
A[0] A[O] A[0]

Al1] ALL] B[O]

A2] :)_,}' ALl AlL]

A3] :.:.;'7 (1]
Al4] P ﬁ{j}] — i[%] N

AlS) | i (2]
AlE] - A6 AL
Al7] Al7] B[3]

OR_REDUCE(A[0:7]) AND_REDUCE(A[0:7]) A[0:3] == B[0:3]

18 5 April 2011 © 2011 IBM Corporation

| ISPD 2011

Design 2: Placement

= Replicable with

— Large OR-trees
— Large AND-trees

— Compare Logic

Logical Design

1 sulil

= Characteristics

— Many global

connections between
each bit stack

— Few local connections

19

between each bit
stack

|
1
hll
n

du[i,J]
Suli] a 22
diil,)

Sq [iT

il

! sulil
11 I DI
R Sull
u eli] Bit Stack
Y

[0:n-1] bit stack instances

5 April 2011

Design 2 Bit Stack

and

or

and

and

and

1711

or

'. and

and
| or

and

>

T

| 1at
i

and

| mux

exfi]
ri]

© 2011 IBM Corporation

| ISPD 2011
Design 2 Placement Continued

= Custom design verses automatic placement

= Results:
— Clustering causes logic to clump together
— Timing and Congestion increase in the process of being quantified
— Placement unaware of logical partitions

— Currently: Fixed Latches Improve Overall Placement Results

5 April 2011 © 2011 IBM Corporation

| ISPD 2011

1
|
1
=i

Errata to Published Benchmarks

= Goal: generate an end to end benchmark flow solving the dataflow design problem

= Changes

— Added Clocking Signals

* reduces HPWL Ratio because latches are fixed
* Needed for future timing work

— Pin Locations and Pin Count:

* Improved Placement
* Improved Pin Count, more pins for a flatter netlist

— Simplification — Removed some control logic to focus on datapath placement
* Why?
— Ongoing Research Quantifying Other Areas of Suboptimality

* Routing
* Power
* Delay

= Published at:
— Special thanks to Professor Igor Markov

21 5 April 2011 © 2011 IBM Corporation

| ISPD 2011

Results: Base Case
— Design 1 — Design 2

* Most placers generate overlaps

* ntuPlace3 Aborted

* CAPO: best overall HPWL

* Most placers generate overlaps
e Overall better than design 1
* ntuPlace3: best overall HPWL

Design 1 Design 2
Run Run
Placer TWL TWL Ratio | Time (s) TWL TWL Ratio | Time (s)
Custom 11000365 1.00 n/a 8642097 1.00 n/a
Capo 15945589* 1.45* 1453.9 |[14381067* 1.66* 1430.6
mPL6 18290965* 1.66* n/a n/a n/a n/a
ntuPlace3 n/a n/a n/a 11110251* 1.29* 533.0
APlace* n/a n/a n/a n/a n/a n/a
Dragon 52926316 4.81* 2350.18 | 34711167 4.02* 2692.0
FastPlace | 16336840* 1.49* 194.9 n/a n/a n/a

= * Completed with Overlaps
= ntuPlace3: Aborts during global placement for Design 1

= n/a: Did not complete

22 5 April 2011 © 2011 IBM Corporation

Results: Whitespace

23

| ISPD 2011

Design 1 Test Cases

* * generated overlaps
e ntuPlace3 Aborted
e CAPO: best overall HPWL

Design 2 Test Cases
* Best HPWL seen at 10% to
15% whitespace

e ntuPlace3: best overall
HPWL

Whitespace 925 | 89.0 | 858 | 828 | 80.1 | 774 | 74.0 | 71.9
Capo 1.45*% | 1.49* [1.24*|1.28*| 1.14* |1.18*[1.12* [1.11*
mPL6 1.66* | 1.65* | 1.64*|1.66*| 1.64* |1.63*[1.76* [1.73*
ntuPlace3 - - - - - - - -
aPlace - - - - - - - -
Dragon 481 | 500 [539|588 | 583 [591 | 6.56 | 7.37
FastPlace 1.49* | 1.33* [1.31*|1.30*| 1.27* [1.27* | 1.29* | 1.30*
\Whitespace 955 | 936 (895|853 | 815 | 781 | 75.2 |72.2
Capo 1.66* | 1.24* |1.17*|1.18* | 1.18* | 1.20* | 1.20* |1.21*
MPL6 - 1.19* [1.15*| 1.72* | 1.15* | 1.16* |1.17*|1.18*
ntuPlace3 129*| 112 | 114] 113 | 1.20 | 1.15 | 1.16 | 1.24
aPlace - - - - - - - -
Dragon 402 | 424 | 449 | 481 | 509 | 533 | 5.60 | 5.93
FastPlace - 126 | 115|115 | 117 | 119 | 120 |1.21
5 April 2011 © 2011 IBM Corporation

| ISPD 2011
Future Work

= High Density Legalization

— High utilization of datapath design difficult to solve
efficiently

= Routing Aware Placement
— Easy to pack, hard to route
= Structural Analysis
— Understanding logic structure can improve results
— How do we quickly evaluate the logical structure?
= Datapath Extraction
— Datapath Components in Traditional Random Logic

— Simultaneous Optimization of Both Styles

24 5 April 2011

1]

. .|l
el i

il

© 2011 IBM Corporation

