RegularRoute: An Efficient Detailed Router with Regular Routing Patterns

Yanheng Zhang and Chris Chu

Electrical and Computer Engineering Department Iowa State University

- Motivation and Overview
- Local Net Routing
- Global Segment Assignment
- Experimental Results
- Conclusion and Discussion

- Motivation and Overview
- Local Net Routing
- Global Segment Assignment
- Experimental Results
- Conclusion and Discussion

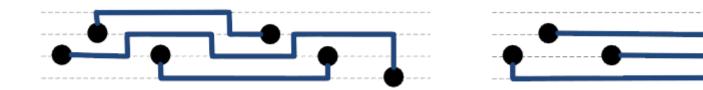
Previous Detailed Routing Techniques

- Iterative ripup and reroute
 - Mighty [Shin et al. TCAD-87]
- Multi-level methodology
 - DUNE [Cong et al. TCAD-01]
 - MR [Chang et al. TCAD-04]
- Boolean satisfiability
 - SAT Router for FPGA [Nam et al. TCAD-02]
- Track routing
 - Track Routing [Batterywala et al. ICCAD-02]
- Escape routing
 - Escape Routing for Pin Clusters [Ozdal TCAD-09]

Sequential in nature

Net ordering issue

Concurrent approach Long runtime


Pin access issue

Not handle full-chip routing


Apply Regular Routing Patterns

- Regular routing patterns
 - Potentially improve design rule satisfaction
 - Explore solution space more efficiently
 - Might affect routability due to restricted routing patterns

Non-trivial routing patterns

Regular routing patterns

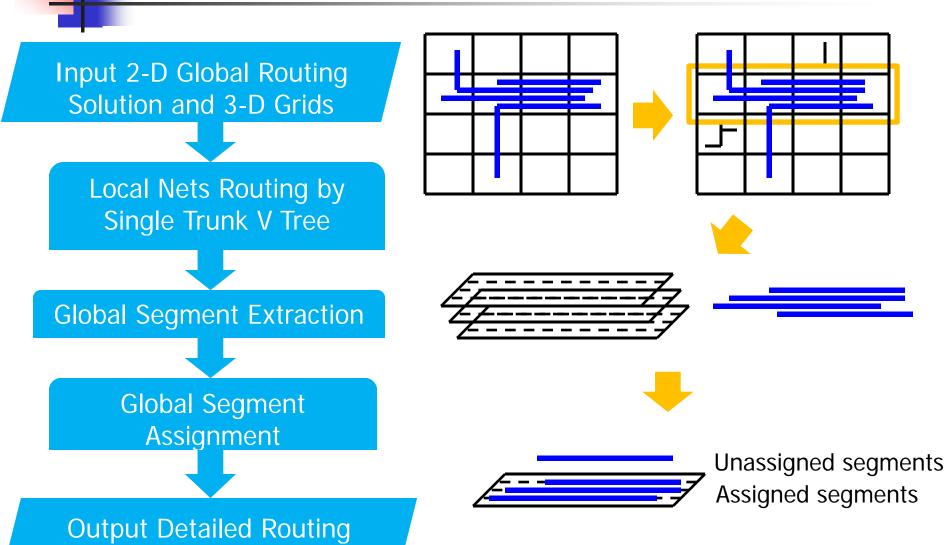
Problem Formulation for Detailed Routing

Input

- 3-D detailed routing grids
- 2-D global routing solution organized in global segments
- Complete netlist

Objective

- Generate detailed routing solution to route as many nets as possible
- Secondary objectives include minimizing wirelength, via count and non-preferred usage

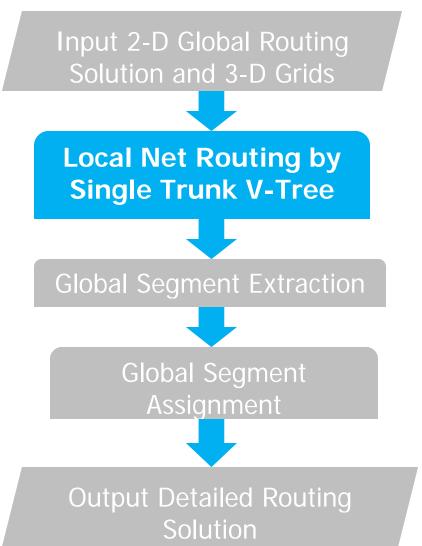

Assumptions

- Each grid edge can accommodate exact one wire except blockage
- Each layer has preferred routing direction. They are perpendicular for adjacent layers. Metal_1 is assumed to be horizontal
- Pins are assumed to be on metal_1

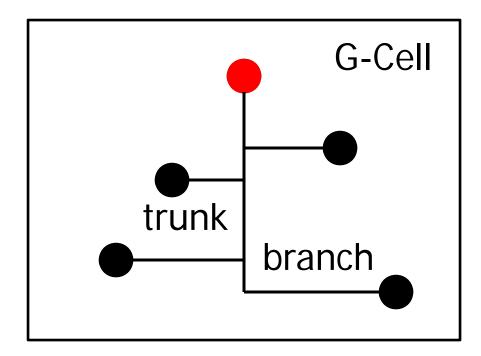
Solution

RegularRoute: Flow and Overview

RegularRoute: Our Contributions

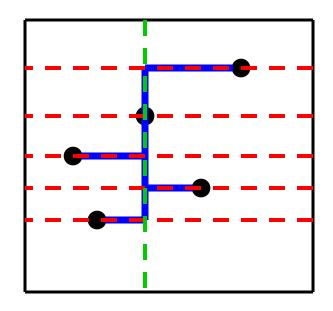

- Applying regular routing patterns
 - Use regular routing patterns instead of non-trivial patterns
 - Correct-by-construction for satisfying more design rules
- Panel based global segments allocation
 - Formulate assigning global segments in one panel as MWIS proble
 - All nets inside each panel are considered simultaneously
- Novel techniques to improve routability
 - Effective partial assignment for further assignment
 - Pin promotion to prevent pin access issue
- Fast computational time
 - Fast heuristic in solving the MWIS
 - Can easily be adapted to parallel version

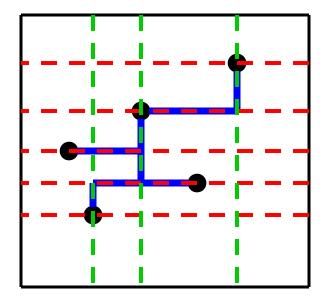
- Motivation and Overview
- Local Net Routing
- Global Segment Assignment
- Experimental Results
- Conclusion and Discussion


Local Net Routing

Single-Trunk V-Tree

- Single-Trunk V-Tree
 - Find pin with median X coordinate
 - Construct *trunk* with vertical wire (metal_2)
 - Connect other pins to trunk as branch
 - Time complexity: O(n)

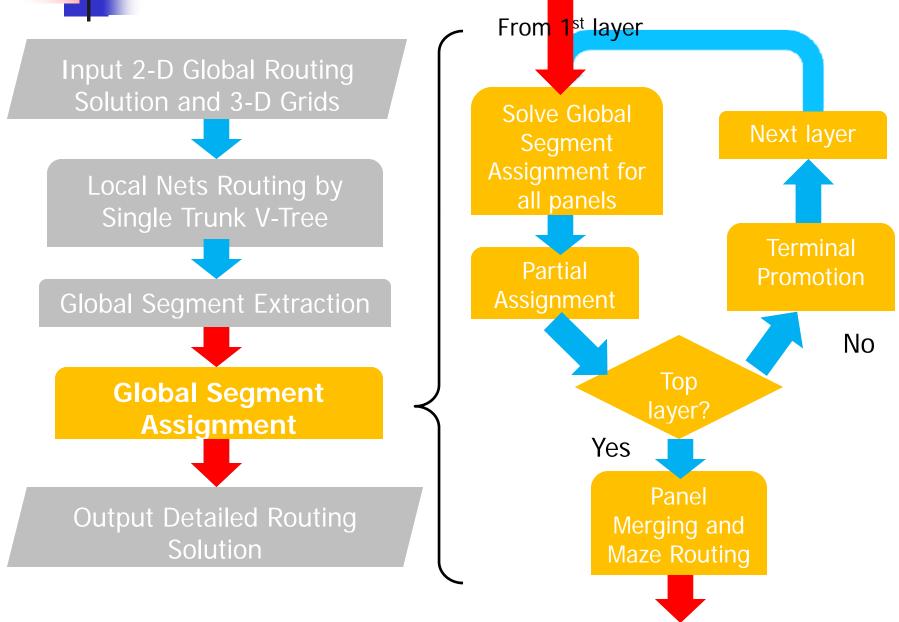



V-Tree vs. Arbitrary Tree

- V-Tree vs. Arbitrary Tree
 - Number of blocked horizontal tracks: V-Tree = Arbitrary Tree
 - Number of blocked vertical tracks: V-Tree < Arbitrary Tree</p>

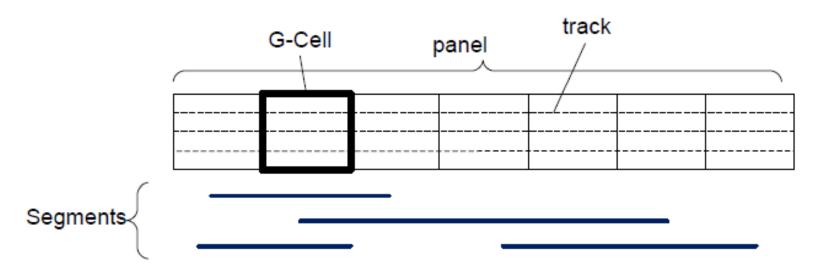
Minimize metal_2 usage

Single Trunk V-Tree


Arbitrary Tree

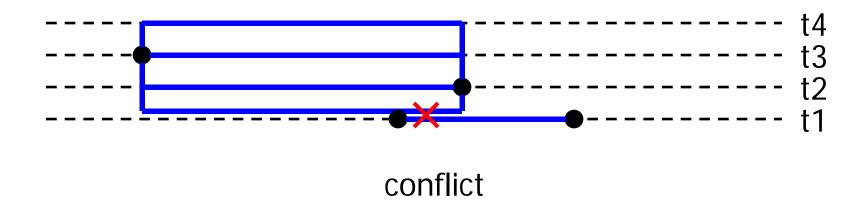
Outline

- Motivation and Overview
- Local Net Routing
- Global Segment Assignment
- Experimental Results
- Conclusion and Discussion


Global Segment Assignment

Global Segment Assignment in one Panel

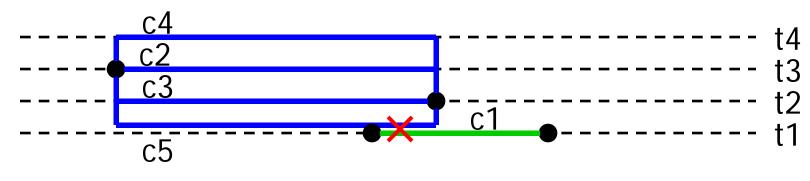
- Input
 - A set of global segments that have not been assigned
 - A set of routing tracks inside one panel
- Objective
 - Assign as many segments as possible in regular routing patterns
 - Minimize wirelength, via count, non-preferred usage
- Concepts
 - Track: A sequence of grids in preferred routing direction
 - Panel: A collection of tracks in one column/row of G-Cells



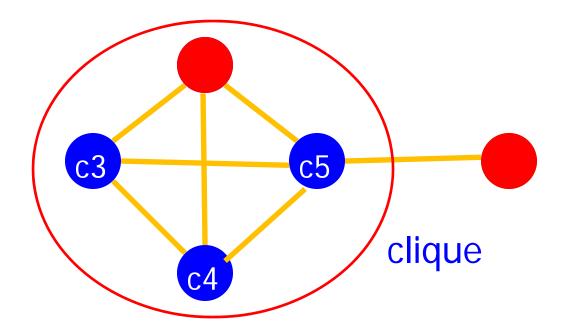
Concept of a Choice

Choice

- A valid regular routing solution for one segment
- Number of choice reflects the flexibility of assignment for one segment
- Two choices that cannot co-exist cause a conflict

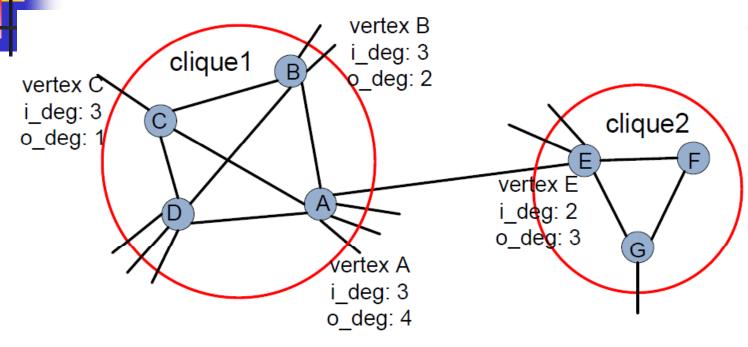


Maximum Weighted Independent Set (MWIS)


- Formulate Global Segment Assignment in one Panel as MWIS problem
- Introduce conflict graph G with vertex set V and edge set E: each vertex represents one choice, each edge represents conflict between two choices
- Each vertex is assigned a weight representing assignment priority
- Objective: find the independent set of vertices to maximize total weight

Example of Conflict Graph

conflict



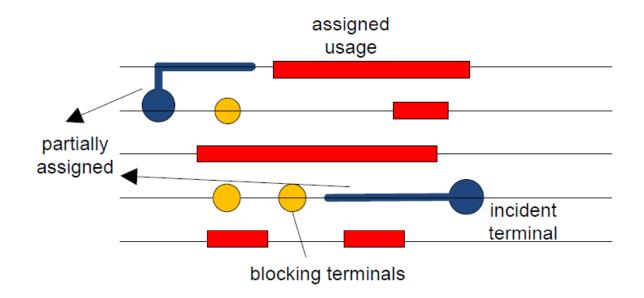
Calculate weight for vertices

$$W(v) = L - \alpha_1 \times ||R|| + \alpha_2 \times AvD + \alpha_3 \times (F_1 + F_2)$$

- Contains five components
 - Segment length (number of spanned G-Cells)
 - Terminal connection
 - G-Cell boundary density
 - Flexibility component for ending G-Cell with pending segment

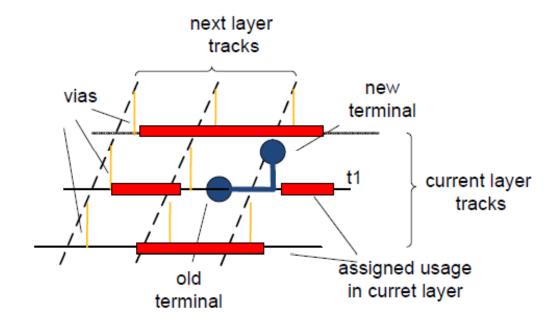
Solve MWIS

$$C(v) = W(v) - \beta \times i_{deg}(v) - \gamma \times o_{deg}(v)$$


- Solve MWIS problem
 - Rank vertices based on cost
 - Extract vertex with largest weight and do assignment
 - Update incident vertices and in/out degrees
 - Use heap for efficient extraction and update

Partial Assignment

Partial Assignment


- Improve resource utilization after MWIS
- Assign partial segment starting from terminals
- Post-processing after MWIS

Terminal Promotion

- Terminal Promotion
 - Terminal connection issue: segment is assigned in upper layer while terminals are on lower layers
 - Promote terminals after processing current layer
 - Treat new terminals as if they are on upper layer

Unassigned Segments on Top Layer

Panel Merging

- Allow violation of the input global routing solution
- Offers more flexibility
- Can be applied in lower layers

Maze Routing

- Line probe based maze routing
- 3-D maze routing

Optimal MWIS Solver

- Last resort for better solving the problem
- Generally slow and solution quality is not guaranteed

Outline

- Motivation and Overview
- Local Net Routing
- Global Segment Assignment
- Experimental Results
- Conclusion and Discussion

Experimental Set-up

Testcases

- ISPD98 placement benchmark suite derived testcases
- ISPD05 placement contest benchmark suites derived testcases
- Computing Platform
 - 3.16 GHz Intel Xeon processor with 32G memory
- Input to RegularRoute
 - Global routing testcases with similar format to ISPD07/08 global routing contest benchmark suites
 - 2-D global routing solutions
- Input to WROUTE
 - LEF/DEF design for placed testcases

Flow for making testcases

Results for Local Net Routing

		Single Trunk V-Tree				RSMT			
	# Local Nets	# un. Local	CPU (Sec.)	Metal_2 usage	# un. Global	# un. Local	CPU (Sec.)	Metal_ 2 usage	# un. Global
ibm01	1081	0	0.04	6.3	0	0	0.02	9.6	0
ibm02	1750	0	0.09	12.8	0	0	0.04	15.3	0
ibm07	4479	0	0.18	22.3	0	7	0.05	32.6	5
ibm08	5539	0	0.23	27.8	0	0	0.11	39.6	0
ibm09	5429	0	0.20	28.2	0	9	0.08	37.9	0
ibm10	2984	0	0.27	17.4	0	0	0.12	29.4	1
ibm11	6983	0	0.26	38.9	0	4	0.07	50.1	7
ibm12	2433	0	0.32	14.5	0	0	0.12	26.8	0

Full Results for ISPD98 Derived Testcases

	FR4.0		Regula	arRoute		WROUTE(Encounter)				
	CPU (Sec.)	# un. assign	CPU (Sec.)	Via ×10e5	wlen ×10e5	Viola- tion	CPU (Sec.)	Via ×10e5	wlen ×10e5	
ibm01	0.47	0	3.17	0.84	6.9	0	47	0.84	7.1	
ibm02	2.71	0	14.4	2.9	15.9	3	155	3.0	16.1	
ibm07	8.51	0	34.3	3.8	39.9	12	190	3.8	40.6	
ibm08	10.1	0	54.6	4.4	44.5	0	193	4.4	44.1	
ibm09	6.11	0	43.1	3.9	37.0	0	184	3.9	37.4	
ibm10	8.97	0	66.9	6.0	68.5	0	290	6.2	69.5	
ibm11	15.7	0	68.1	4.8	53.2	23	287	5.1	53.8	
ibm12	25.4	0	112.1	7.0	97.4	9	422	7.2	98.3	
Sum	77.97	0	396.7	33.6	363.3	47	1768	34.4	366.9	
Norm	0.25	/	1	1	1	/	4.45	1.02	1.01	

Full Results for ISPD05 Derived Testcases

	FR4.0	RegularRoute				WROUTE(Encounter)				
	CPU (Sec.)	# un. assign	CPU (Sec.)	Via ×10e6	wlen ×10e7	Viola- tion	CPU (Sec.)	Via ×10e6	wlen ×10e7	
a1	141	0	622	1.5	8.4	0	1201	1.5	8.5	
a2	189	0	558	1.9	10.2	221	1344	2.0	10.4	
а3	342	0	1176	3.5	21.8	0	3939	3.6	22.1	
a4	289	4	1330	3.0	19.8	324	4424	3.2	20.4	
b1	134	0	911	2.2	9.8	0	1802	2.2	9.7	
b2	249	0	1177	3.7	21.2	54	2856	3.9	22.0	
Sum	3384	4	5774	15.8	91.2	599	15566	16.4	93.1	
Norm	0.22	1	1	1	1	150	2.69	1.04	1.02	

Outline

- Motivation and Overview
- Local Net Routing
- Global Segment Assignment
- Experimental Results
- Conclusion and Discussion

Conclusion and Future Work

Conclusion

- We proposed RegularRoute for routing with regular routing patterns in detailed routing
- Propose a layer by layer and panel by panel strategy to solve global segment assignment
- Formulate MWIS and solved by fast heuristic
- Proposed other effective methods for improving QoR

Future Work

- Continue improve performance of RegularRoute
- Incorporate more design-related objectives
- Develop parallel version of RegularRoute

Thank You!

Questions?