Cross Link Insertion for Improving Tolerance to Variations in Clock Network Synthesis Tarun Mittal Cheng-Kok Koh School of Electrical and Computer Engineering Purdue University #### **Presentation Flow** - Introduction - Comparison of link insertion schemes - Clock Network Synthesis - Experimental Results - Conclusions and Future Work **Insertion of Cross link** Current approach to Clock Network Synthesis - Clock Trees - Shorter Wiring - Unique path from source to sinks - More susceptible to process variations #### **Insertion of Cross link** - Current approach to Clock Network Synthesis - Clock Trees - Shorter Wiring - Unique path from source to sinks - More susceptible to process variations - Clock Mesh - Higher wiring cost - Many paths from source to sinks - More robust to process variations #### **Insertion of Cross link** - Current approach to Clock Network Synthesis - Clock Trees - Shorter Wiring - Unique path from source to sinks - More susceptible to process variations - Clock Mesh - Higher wiring cost - Many paths from source to sinks - More robust to process variations - Cross link form a compromise between clock trees and clock meshes #### **Effect of cross link insertion** Change in skew between nodes u and v due to cross link addition $$\overline{q}_{u,v} = \alpha q_{u,v} + \alpha \beta$$ where $\overline{q}_{u,v}$ =skew after link addition $q_{u,v}$ =skew before link addition T_a #### **Effect of cross link insertion** Change in skew between nodes u and v due to cross link addition $$\overline{q}_{u,v} = \alpha q_{u,v} + \alpha \beta$$ where $\overline{q}_{u,v}$ =skew after link addition $q_{u,v}$ =skew before link addition T_a $\alpha = R_I/R_{loop}$ #### **Effect of cross link insertion** Change in skew between nodes u and v due to cross link addition $$\overline{q}_{u,v} = \alpha q_{u,v} + \alpha \beta$$ where $\overline{q}_{u,v}$ =skew after link addition $q_{u,v}$ =skew before link addition T_a $$\alpha = R_I/R_{loop}$$ $$\beta = CI/2(R_{u,u}-R_{v,v})$$ ### **Comparison of Link insertion schemes** #### Method 1: - Link I₁ is inserted between two sinks u and v - This method of link insertion is used in [Rajaram-Hu, ISPD'05] ### **Comparison of Link insertion schemes** #### Method 1: - Link I₁ is inserted between two sinks u and v - This method of link insertion is used in [Rajaram-Hu, ISPD'05] #### Method 2: - Link l₂ is inserted between two higher level internal nodes u and v - This method of link insertion is used in our approach ### **Comparison of Link insertion schemes** #### Method 1: - Link I₁ is inserted between two sinks u and v - This method of link insertion is used in [Rajaram-Hu, ISPD'05] #### Method 2: - Link l₂ is inserted between two higher level internal nodes u and v - This method of link insertion is used in our approach - $I_2 << I_1$ satisfies $\alpha_2 < \alpha_1 \& \beta_2 < \beta_1$ Method 2 ### Effect of cross link on sink delays #### Sinks are in the same subtree #### Method 1: - m and n have different path lengths to the end point of the cross link - skew variability depends upon locality of sink node to the end point of the cross link #### Sinks are in the same subtree #### Method 1: - m and n have different path lengths to the end point of the cross link - skew variability depends upon locality of sink node to the end point of the cross link #### Method 2: - m and n have nearly same path lengths to the end point of cross link - skew variability is same for the sink nodes #### Measured skew variability for both methods Sinks are in different sub-trees connected by the cross link - Method 1: - Different delays for sinks within a sub-tree - Non uniform correlation between the sink pairs m and n ## Sinks are in different sub-trees connected by the cross link #### Method 1: - Different delays for sinks within a sub-tree - Non uniform correlation between the sink pairs m and n #### Method 2: - Same delays for sinks within a sub-tree - Uniform correlation between all sink pairs m and n ### Sinks are in two disjoint sub-trees - No predictable correlation between delays of sinks m and n due to no overlap path - Both Method 1 and Method 2 are equally ineffective in this situation. ### **Clock Network Synthesis** - Our clock network synthesis is based on the usage of Method 2 for cross link insertion. - Problem formulation is based on ISPD'10 High performance Clock Network Synthesis contest. - Our approach to clock network synthesis consists of 3 main steps - Merging - Buffer Insertion - Link Insertion #### **Problem Formulation** - Given: Sinks, Blockages and clock source location - Objective: Generate a clock network T that connects clock source to the sinks. - Constraints: - All sink pairs with distance between them less than user specified distance are called local sink pairs. - All local sink pairs should satisfy Local clock skew constraint (LCS). - Slew at any point should be less than predefined limit S. - Buffers should not be placed in the blockages In bottom-up phase clock tree is constructed iteratively. #### **Buffer Insertion** - Slew constraints results in the buffer insertion in clock tree. - Buffers are inserted on the stem wires. - NGSPICE simulations are used to compute the length of stem wire. - Each buffer buf_i has a merging region mr_{buf_i} associated with it. #### **Buffer Insertion** - Slew constraints results in the buffer insertion in clock tree. - Buffers are inserted on the stem wires. - NGSPICE simulations are used to compute the length of stem wire. - Each buffer buf_i has a merging region mr_{buf_i} associated with it. - Blockage avoidance is considered ### Merits of our design flow - Our link insertion flow allows us to control the link length. - Inserting link below the buffer helps in reducing the variation effects of buffer as compared to inserting above it. - Cross link maximizes the reduction of the skew variability for the sinks in the same sub-tree - Cross link improves the correlation of the sink delays in the two sub-trees that are connected by the cross link. #### **Experimental Setup** - 45nm Predictive Technology Model - Inverters types - Mid sized inverter (inv-1) - 10μm nmos, 14.6μm pmos (for similar R/F delay) - input cap=35fF, resistance=61.2 Ω , output parasitic cap=80fF - Small inverter(inv-2) - 1.37μm nmos, 2μm pmos - input cap=4.2fF, resistance=440 Ω , output parasitic cap=6.1fF - Wire types - wire-1: $0.1(\Omega/\mu m)$, $0.2(fF/\mu m)$ - wire-2: $0.3(\Omega/\mu m)$, $0.16(fF/\mu m)$ ### **Experiment Setup** - Supply voltage variations=15% - Wire width variations=10% - Inverter size: 30 parallel inv-2 - Buffer size: 10 parallel inv-2 driving 40 parallel inv-2 - In ISPD Monte-Carlo simulations, each inverter gets supply voltage independent of other inverters in the circuit ### Benchmark summary | Name |
sinks | LCS
distance
(nm) | LCŞ
(ps) | Width
(nm) | Height
(nm) | # blockages | |-------------|------------|-------------------------|-------------|---------------|----------------|-------------| | ispd10cns01 | 1107 | 600000 | 7.50 | 8000000 | 8000000 | 4 | | ispd10cns02 | 2249 | 600000 | 7.50 | 13000000 | 7000000 | 1 | | ispd10cns03 | 1200 | 370000 | 4.99 | 3071928 | 492989 | 2 | | ispd10cns04 | 1845 | 600000 | 7.50 | 2130492 | 2689554 | 2 | | ispd10cns05 | 1016 | 600000 | 7.50 | 2318787 | 2545448 | 1 | | ispd10cns06 | 981 | 600000 | 7.50 | 1949600 | 890880 | 0 | | ispd10cns06 | 1915 | 600000 | 7.50 | 2536640 | 1447680 | 0 | | ispd10cns08 | 1134 | 600000 | 7.50 | 1837440 | 1628160 | 0 | #### **ISPD Monte-Carlo Simulations** | ВМ | # sinks | LCS
(ps) | Method | 95%
LCS
(ps) | Cap
(fF) | Cap
ratio | CPU
(s) | |----|---------|-------------|--|---|---|--|---| | 01 | 1107 | 7.50 | Contango[1,18]
CNSrouter[1,19]
NTUclock[1]
Work in [20]
Our work (buf)
Our work (inv) | 7.01
7.23
8.66
7.16
7.32
7.03 | 198337
1168104
293887
445331
142325
136961 | 1.44
8.52
2.14
3.25
1.03
1.00 | 12015
675
15
0.40
1092
3237 | | 02 | 2249 | 7.50 | Contango[1,18]
CNSrouter[1,19]
NTUclock[1]
Work in [20]
Our work (buf)
Our work (inv) | 7.34
7.35
10.73
7.33
7.42
7.36 | 375863
2099811
832483
933574
263198
253760 | 1.48
8.27
3.28
3.67
1.03
1.00 | 25006
2140
176
2.42
4314
10157 | | 03 | 1200 | 4.99 | Contango[1,18]
CNSrouter[1,19]
NTUclock[1]
Work in [20]
Our work (buf)
Our work (inv) | 4.18
3.95
8.63
4.88
4.49
4.82 | 55861
93965
167062
183702
36609
36867 | 1.51
2.54
4.53
4.98
0.99
1.00 | 3840
21
6
1.57
383
1761 | #### **ISPD Monte-Carlo Simulations contd...** | ВМ | # sinks | LCS
(ps) | Method | 95% LCS
(ps) | Cap
(fF) | Cap
ratio | CPU
(s) | |----|---------|-------------|--|--|---|---|---| | 04 | 1845 | 7.50 | Contango[1,18]
CNSrouter[1,19]
NTUclock[1]
Work in [20]
Our work (buf)
Our work (inv) | 4.46
7.25
9.55
4.09
6.70
6.79 | 71843
125333
325206
196337
51070
47393 | 1.51
2.64
6.86
4.14
1.07
1.00 | 6075
22
58
0.27
934
2543 | | 05 | 1016 | 7.50 | Contango[1,18]
CNSrouter[1,19]
NTUclock[1]
Work in [20]
Our work (buf)
Our work (inv) | 4.41
7.27
6.98
3.81
4.78
4.41 | 37690
74084
130389
89094
25129
22589 | 1.48
8.27
3.28
3.67
1.03
1.00 | 2406
10
11
0.40
278
778 | | 06 | 981 | 7.50 | Contango[1,18]
CNSrouter[1,19]
NTUclock[1]
Work in [20]
Our work (buf)
Our work (inv) | 6.05
6.79
416.62
7.49
6.41
5.81 | 47810
87390
2E+06
160447
32680
29278 | 1.63
2.98
68.31
5.48
1.11
1.00 | 2660
41
1
0.28
285
995 | #### **ISPD Monte-Carlo Simulations contd...** | ВМ | # sinks | LCS
(ps) | Method | 95% LCS
(ps) | Cap
(fF) | Cap
ratio | CPU
(s) | |----|---------|-------------|--|--|---|--|---| | 07 | 1915 | 7.50 | Contango[1,18]
CNSrouter[1,19]
NTUclock[1]
Work in [20]
Our work (buf)
Our work (inv) | 4.58
5.97
8.12
6.24
5.86
5.53 | 72644
128351
275597
228243
48316
47555 | 1.52
2.69
5.79
4.79
1.01
1.00 | 2351
27
66
0.30
818
2765 | | 08 | 1134 | 7.50 | Contango[1,18]
CNSrouter[1,19]
NTUclock[1]
Work in [20]
Our work (buf)
Our work (inv) | 5.15
5.37
7.64
5.47
5.07
5.72 | 52490
97421
165883
228243
33029
31088 | 1.68
3.13
5.33
7.34
1.06
1.00 | 1987
17
7
0.28
367
938 | We were able to meet the LCS constraint for all benchmarks with lower capacitance as compared to previous work. #### Conclusions and Future Work #### Conclusions - New link insertion methodology of inserting links between higher level internal nodes in a clock tree is proposed - Proposed methodology improves the correlation of sink delays for the sinks that have similar path lengths to the inserted cross link - NGSPICE based Monte-Carlo simulations verifies the effectiveness of the approach #### Future work - Merging to minimize the local clock skew instead of global skew - Handling of longer cross links Thank You