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Clock Distribution Categories
 Clock distribution is an very important issue
Buffered and unbuffered trees

 Used in various ASICs
 Supported by many physical design tools
 See Tsay TCAD’93, Xi DAC’95

Non-tree structure with crosslinks
 Intended for reducing clock skews
 See Rajaram DAC’04, TCAD’06See aja a C 0 , C 06

Grid and buffered trees
 High performance processors
 Sometimes manually design the clock structures Sometimes manually design the clock structures
 See Shelar ISPD’09, TCAD’10, Guru VLSI Circuits’10
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High Performance Clock Distribution
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Post-grid Clock Distribution
 In our modeling

 Entire chip divided into 
several layout areas

Global grid
several layout areas

 Each layout area contains 
many blocks

Grid Buffer

Blocks

R dmany blocks

 Each block contains 
standard cells and/or macros
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multilayer tracks
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Motivations
 Clock distribution of microprocessor:
Crucial importance
Major source of power dissipation

 High capacitance usage 
 18 1% f t t l l k it [1] 18.1% of total clock capacitance [1]

 See Pham Solid State Circuits’06
 Manually design in practicey g p
Hard to satisfy delay/slew constraints
Time to market
 S Sh l ISPD’09 TCAD’10 See Shelar ISPD’09, TCAD’10
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[1]: D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey, P. Harvey, H. Hofstee, C. Johns, 
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Problem Formulation
 Input
A set of reserved tracks 
Locations and capacitances of ports P
Different types of wires on each metal layer
Delay limit D. Slew limit S

 Output
A clock network (may be non tree structures)A clock network (may be non-tree structures) 

 Objective
Connecting every port to the source
 Satisfying delay and slew constraints
Minimizing capacitance usage
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Post-grid Clock Routing
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Overall Algorithm
 Critical ports

 Ports with large capacitance or 
f f thfar away from the source

 Path expansion algorithm
 Elmore-delay driven
 Expanding in some selected 

directions
 Post-processing

 Wire replacement
 Topology refinement

 Iterations
 The overall algorithm is 

repeatedly invoked
 May fail when number of 
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Delay-driven Path Expansion Algorithm
 Basic steps
 Simultaneously expand from all ports

 Select the path with the minimum Elmore delay to further expand

Connect the ports to the source once the path reaches the source 
grid

Check delay/slew constraints
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A Routing Example
 Initially, the heap is empty
 First iteration (simultaneously expand from all ports)

 Heap={(P1,P2);(P1,C1);(P2,P3);(P2,P1);(P3,P2);(P3,C2)}

 Second iteration (P1,P2)
 Heap={(P3,C2);(P1,P2,P3);(P1,C1);(P2,P3);(P2,P1);(P3,P2)}p {( , );( , , );( , );( , );( , );( , )}

 Third iteration (P C ) Third iteration (P3,C2)
 Heap ={(P3,C2,S2);(P1,P2,P3);(P1,C1);(P2,P3);(P2,P1);(P3,P2)}
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A Routing Example
 Fourth iteration (identify chain paths)

 Heap ={(P1,P2,P3);(P1,C1);(P2,P3);(P2,P1)}
 Chain path={(P1,P2,P3);(P2,P3)}

 Fifth iteration (P2,P3)
 Heap={(P1,P2,P3);(P1,C1)}
 Chain path={(P1,P2,P3);(P1,P2)}p {( , , );( , )}

 Sixth iteration (P1 P2) Sixth iteration (P1,P2)
 Heap={}, chain path={}
 Final result
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Post-processing Techniques
 Wire replacement

 Two types of wires 
 it / i t t d ff

 Wire replacement
 Port with largest delay: P5

 Replace edge P1C1 capacitance/resistance tradeoff

 Procedures
 Identify port Pl with the largest

 Replace edge P1C1

 Replace edge P4C2

 Replace edge P2P3, P3C1

 Replace P5C3, C3C2, C2C1, C1S1Identify port Pl with the largest 
Elmore delay

 Replace wires in a bottom-up style

p , , ,

 Check delay/slew constrains
S1

C1P3P2 P1

S1

C1P3P2 P1

S1

C1P3P2 P1

S1
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C2 P4C3

P5

C2 P4C3

P5

C2 P4C3

P5
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C2 P4C3

P5
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Post-processing Techniques
 Topology refinement

 Procedures
 Topology refinement

 Elmore delay:
 Disconnect a port P

 Expand P towards all 

 P5>P4>P6>P2>P1>P3>P7

 Sequentially process all the ports
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C1P3P2 P1
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Non-tree Extensions
 A small number of ports have 

exceptionally large capacitances
 The delay of its shortest path

 Non-tree extensions
 Connect p to S1

 The delay of its shortest path 
exceeds the delay limit D

 Procedures
 Establish a shortest path for p

 Find a second source S2

 Add crosslinks
 Find a third source S3p p

 Find a second shortest path
 Add crosslinks

 Target delay not met? Add all 
useful corsslinks

 Target delay not met? Do the Target delay not met? Do the 
same thing for parent node of p
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Experiment Setup
 Environment
 Implemented in C++
Run on Linux server

 Intel Pentium 4 3.2GHz 
 2GB RAM

Delay setup: 5ps
 Slew setup: input: 10ps; output: 15 ps

B h k Benchmarks
 3 test cases are provided by industry
 11 test cases are from ISPD 2010 Clock Network Synthesis Contestes cases a e o S 0 0 C oc Ne wo Sy es s Co es

 Comparisons
Compared with TG, which was proposed by Shelar in ISPD’09, 

TCAD’10
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Tree Growing Algorithm
 Proposed in R. Shelar ISPD’09, 

TCAD’10
 D l /Sl t i t

 Tree Growing Algorithm
 Expand from the source

 Delay/Slew constraints
 Greedy expansion from the 

source
 Ed ith th ll t

 Add S1C1, S2C2

 Add C2P3

 Add C1P1
 Edges with the smallest 

capacitance will be added into 
the network

 Add P3P2

S1 S2

C2C1 P1 P3P2

S1 S2

C2C1 P1 P3P2

S1 S2

C2C1 P1 P3P2

S1 S2

C2C1 P1 P3P2

S1 S2

C2C1 P1 P3P2

S1 S2

C2C1 P1 P3P2
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Comparisons: capacitance
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Comparisons: wire length

 Without post-processing: 
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Comparisons: run time
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Non-tree extension
 We also did some experiments to see the results of our non-tree 

extension
 A 23 4% i t th i i t d l A 23.4% improvement on the minimum port delay
 Minimum port delay is the lower bound one can achieve using tree 

structures
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Simulation Results
 Simulation tool: Hspice
 Delay
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Simulation Results
 Slew

 Correlation coefficient
 T 96%

Tree slew
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Conclusion
 Proposed an efficient algorithm to construct a post-grid clock 

network on reserved multi-layer metal tracks

 Extended the algorithm to allow non-tree structures to further 
b i d th d lbrings down the delay

 Verified our results using Hspice simulation Verified our results using Hspice simulation

 Expected to reduce energy consumption, improve grid to port p gy p , p g p
delay in real post-grid clock networks

28ISPD 2011



29ISPD 2011


