From Academic Ideas to Practical Physical Design Tools

Ren-Song Tsay ISPD, March 2011

My Family

National Tsing-Hua University, Taiwan

UC Berkeley

1994 IEEE Transaction CAD Best Paper Award

Physical Design System

ArcGate – Astro: the first commercially successful performance optimization physical design system

Galaxy Design Platform Concurrent Physical Design

Reconfigurable Computer for Semulation

a breakthrough logic verifications (Simulation/Emulation) system

Cadence Incisive
Xtreme series

Wiki Physical Design Flow

Pao-Ding

Physical Design Optimization

Physical Design Optimization

- Routability
 - No design rule violations
- Performance
 - clock period
 - Low power

Floorplan

Placement

Routing

A Progressive Design Methodology

Placement

Global Routing

Detailed Routing

ArcGate Approach:

Placement

Global Routing

Intermediate Routing

Detailed Routing

- Lookahead
- Feedback

A Progressive Optimization Example

PROUD Quadratic Placement

$$\min\{L = \frac{1}{2} \sum_{i,j} c_{ij} (x_i - x_j)^2 \mid \forall n_{ij} \in N\}$$

- Convex contour of the cost function
 - Recursive partitioning
- Min-cut improvement
- First-order constraint
- Detailed placement improvement
 - Pair-wise interchange
 - Single cell movement
 - Rotation/flipping

Progressive optimization

Cell Porosity & Pin Access

Estimate Chip Height and Width

The number of required routing tracks should satisfy H/V cut-demands

Align Useful M1 Routing Tracks

Runtime 5.3 x faster

A Test Result of M1 Alignment

M1

Scan Chain Optimization

Greatly improve wirability and timing performance

Optimal Clock Tree Synthesis

Balance wire, load and phase delays (of macros)

Before optimization

After optimization

LEQ Port Optimization

Critical path

Switch to faster internal edge

Faster edge

Timing Optimization

Timing-Driven: Min Cycle Time

Design Plan Timing Budgeting

Main issue: cross-macro timing paths

Net Splitting

Separate critical from non-critical group

Clock Network Styles

Mesh

H-Tree

C-Tree

Elmore delay

$$t_4 = R_4(C_4 + C_5 + C_6)$$

$$C_{eq} = C_4 + C_5 + C_6$$

An equivalent lumped delay model of a clock subtree

Fig. 5. Zero-Skew Merge of two subtrees.

Find Zero Skew Point

Solve [rl=xl, r2 = (l-x)l]

$$r_1(c_1/2 + C_1) + t_1 = r_2(c_2/2 + C_2) + t_2$$

Get

$$x = \frac{(t_2 - t_1) + \alpha l \left(C_2 + \frac{\beta l}{2}\right)}{\alpha l (\beta l + C_1 + C_2)}.$$

Practical Clock Route Consideration

Routing Blockages

Avoid Pin Access Blocking

Timing Optimization

Bridging

Timing Constraints

Timing Slack Graph

- A snap shot of the timing verification result in terms of a slack number on each pin and edge.
- It actually contains both timing and connectivity information.

TDP by Minimum Perturbation

Slack and Delta Improvement

$$s_i = t_{ri} - t_{ai}$$
 ... nodal slack $H_{ij} = t_{rj} - \left(t_{ai} + d_{ij}\right)$... edge slack, where $d_{ij} =$ edge delay Define: $x_i = t_{ai} - t_{ai}$... arrival time improvement at node i $y_j = t_{rj}^{'} - t_{rj}$... required arrival time improvement at node j

Incremental Slack Calculation

$$s'_{i} = t'_{ri} - t'_{ai} = (t_{ri} + y_{i}) - (t_{ai} - x_{i})$$

= $(t_{ri} - t_{ai}) + (x_{i} + y_{i}) = s_{i} + (x_{i} + y_{i})$
similarly,

$$H'_{ij} = H_{ij} + x_i + y_j - \Delta d_{ij}$$

where,

$$d_{ij}' = d_{ij} + \Delta d_{ij}$$

Zero-Slack on Active Constraints

At node i:

$$|x_i + y_i + s_i = 0 \implies y_i = -(x_i + s_i)|$$

At edge ij:

$$x_i + y_j - \Delta d_{ij} + H_{ij} = 0 \implies \Delta d_{ij} = (x_i + H_{ij}) - (x_j + s_j)$$

Minimum Placement Perturbation

Assume local placement change

$$\Delta l_{ij} = \Delta d_{ij} / (R_i c + r C_j)$$

Hence

$$\min \sum_{i,j} (\Delta l_{ij})^2 = \min \sum_{i,j} (\Delta d_{ij} / (R_i c + rC_j))^2$$

$$= \min \sum_{i,j} \frac{1}{(R_i c + rC_j)^2} [(x_j + s_j) - (x_i + H_{ij})]^2$$

Equivalent to Quadratic Placement

$$\min \sum_{i,j} (\Delta l_{ij})^2 = \min \sum_{i,j} \frac{1}{D_{ij}^2} \left[(x_j + s_j) - (x_i + H_{ij}) \right]^2$$

$$\text{Pin offset}$$

$$\text{connectivity}$$

* Then take $(l_{ij} + \Delta l_{ij})$ as the upper bound constraint

Net Weighting Placement Approach

$$\min\{L = \frac{1}{2} \sum_{i,j} c_{ij} x_{ij}^2 \mid x_{ij}^2 \le u_{ij}^2, \forall n_{ij} \in N\}$$

Tsay, DAC 90

- Can solve by applying necessary and sufficient Kuhn-Tucker conditions => Lagrange Multiplier = "added net weighting"
 - ◆Approximated Solution

$$\lambda_{ij} = \left(\frac{\frac{\left(x_{ij} - u_{ij}\right)}{u_{ij}}}{\frac{1}{a_{ii}} + \frac{1}{a_{jj}} - \frac{2c_{ij}}{a_{ii}a_{jj}}}\right)$$

Cell Sizing

- Minimize total cell size while meeting timing constraints
 - optimize timing on critical paths
 - size down in non-critical paths
 - Experiments show 30~40% performance gain, with reduced total cell area

Buffer/Repeater Insertion

- ✓ Buffer blocks off unnecessary capacitance load to critical sink.
- ✓ Repeater reduces "quadratic" interconnect delay.

Timing-Driven Example

7K cells

TDP	TDR	Relative cycle time
_		1.00
	_	0.58
_		0.74
		0.40

Progressive Optimization

