Supported by Cadence Design Systems, Inc., NSF, the Packard Foundation, and State of Georgia's Yamacraw Initiative

Closing the Smoothness and Uniformity Gap in Area Fill Synthesis

Y. Chen, A. B. Kahng, G. Robins, A. Zelikovsky

(UCLA, UCSD, UVA and GSU)

http://vlsicad.ucsd.edu

Outline

Layout Density Control for CMP

- Our Contributions
- Layout Density Analysis
- Local Density Variation
- Summary and Future Research

CMP and Interlevel Dielectric Thickness

- Chemical-Mechanical Planarization (CMP)
 - = wafer surface planarization
- Uneven features cause polishing pad to deform

- Interlevel-dielectric (ILD) thickness ≈ feature density
- Insert dummy features to decrease variation

Objectives of Density Control

- Objective for Manufacture = Min-Var
 minimize window density variation
 subject to upper bound on window density
- Objective for Design = Min-Fill
 minimize total amount of filling
 subject to fixed density variation

Filling Problem

- Given
 - \odot rule-correct layout in $n \times n$ region
 - \odot window size = $w \times w$
 - ⊙ window density upper bound U
- Fill layout with Min-Var or Min-Fill objective such that no fill is added
 - ⊙ within buffer distance B of any layout feature
 - o into any overfilled window that has density ≥ U

Fixed-Dissection Regime

- Monitor only fixed set of $w \times w$ windows
 - \odot "offset" = w/r (example shown: w = 4, r = 4)
- Partition n x n layout into nr/w x nr/w fixed dissections
- Each $w \times w$ window is partitioned into r^2 tiles

Previous Works

- Kahng et al.
 - ofirst formulation for fill problem
 - layout density analysis algorithms
 - ofirst LP based approach for Min-Var objective
 - ⊙ Monte-Carlo/Greedy
 - **⊙iterated Monte-Carlo/Greedy**
 - hierarchical fill problem
- Wong et al.
 - **⊙ Min-Fill objective**
 - **⊙dual-material fill problem**

Outline

Layout Density Control for CMP

Our Contributions

Layout Density Analysis

Local Density Variation

Summary and Future Research

Our Contributions

- Smoothness gap in existing fill methods
 - large difference between fixed-dissection and floating window density analysis
 - fill result will not satisfy the given upper bounds

- New smoothness criteria: local uniformity
 - three new relevant Lipschitz-like definitions of local density variation are proposed

Outline

- Layout Density Control for CMP
- Our Contributions
- Layout Density Analysis

- Local Density Variation
- Summary and Future Research

Oxide CMP Pattern Dependent Model

z = final oxide thickness over metal features

K_i = blanket oxide removal rate

t = polish time

 ρ_0 = local pattern density

(Stine et al. 1997)

Removal rate inversely proportional to density

$$\frac{dz}{dt} = -\frac{K}{\rho(x, y)}$$

 Density assumed constant (equal to pattern) until local step has been removed:

$$\rho(x, y, z) = \begin{cases} \rho_0(x, y) & z > z_0 - z_1 \\ 1 & z < z_0 - z_1 \end{cases}$$

Final Oxide thickness related to local pattern density

$$z = \begin{cases} z_0 - \left(\frac{K_i t}{\rho(x, y)}\right) & t < (\rho_0 z_1) / K_i \\ z_0 - z_1 - K_i t + \rho_0(x, y) z_1 & t > (\rho_0 z_1) / K_i \end{cases}$$

pattern density $\rho_0(x, y)$ is crucial element of the model.

Layout Density Models

- Spatial Density Model
 window density ≈ sum of tiles feature area
- Effective Density Model (more accurate)
 window density ≈ weighted sum of tiles' feature area
 weights decrease from window center to boundaries

The Smoothness Gap

• Fixed-dissection analysis \neq floating window analysis

- Fill result will not satisfy the given bounds
- Despite this gap observed in 1998, all published filling methods fail to consider this smoothness gap

Accurate Layout Density Analysis

- Optimal extremal-density analysis with complexity
- Multi-level density analysis algorithm
 - An arbitrary floating window contains a shrunk window and is covered by a bloated window of fixed r-dissection

Multi-Level Density Analysis

- Make a list ActiveTiles of all tiles
- Accuracy = ∞ , r = 1
- WHILE $Accuracy > 1 + 2\varepsilon$ DO
 - find all rectangles in tiles from ActiveTiles
 - add windows consisting of ActiveTiles to WINDOWS
 - Max = maximum area of window with tiles from ActiveTiles
 - BloatMax = maximum area of bloated window with tiles from ActiveTiles
 - FOR each tile T from ActiveTiles which do not belong to any bloated window of area > Max DO
 - > remove T from ActiveTiles
 - replace in ActiveTiles each tile with four of its subtiles
 - Accuracy = BloatMax/Max, r = 2r
- Output max window density = (Max + BloatMax)/(2*w²)

Multi-level Density Analysis on Effective Density Model

- Assume that the effective density is calculated with the value of r-dissection used in filling process
- The window phase-shift will be smaller
- Each cell on the left side has the same dimension as the one on right side

Accurate Analysis of Existing Methods

				LP		Greedy		МС			IGreedy			IMC			
Testcase	Testcase OrgDen		FD	Multi-	Level	FD Multi-Level		Level	FD	Multi-Level		FD	Multi-Level		FD	Multi-Level	
T/W/r	MaxD	MinD	DenV	MaxD	Denv	DenV	MaxD	Denv	DenV	MaxD	Denv	DenV	MaxD	Denv	DenV	MaxD	Denv
								atial Den	sity Mod	el							
L1/16/4	.2572	.0516	.0639	.2653	.0855	.0621	.2706	.0783	.0621	.2679	.0756	.0621	.2653	.084	.0621	.2653	.0727
L1/16/16	.2643	.0417	.0896	.2653	.0915	.0705	.2696	.0773	.0705	.2676	.0758	.0705	.2653	.0755	.0705	.2653	.0753
L2/28/4	.1887	.05	.0326	.2288	.1012	.0529	.2244	.0986	.0482	.2236	.0973	.0326	.2202	.0908	.0328	.2181	.0898
L2/28/16	.1887	.0497	.0577	.1911	.0643	.0672	.1941	.0721	.0613	.1932	.0658	.0544	.1921	.0646	.0559	.1919	.0655
	Effective Density Model																
L1/16/4	.4161	.1073	.0512	.4244	.0703	.0788	.4251	.0904	.052	.4286	.0713	.0481	.4245	.0693	.0499	.4251	.0724
L1/16/16	.4816	0	.2156	.4818	.2283	.2488	.5091	.2787	.1811	.5169	.2215	.185	.4818	.2167	.1811	.4818	.2086
L2/28/4	.2977	.1008	.0291	.3419	.106	.063	.3385	.1097	.0481	.334	.0974	.048	.3186	.1013	.0397	.324	.0926
L2/28/16	.5577	0	.2417	.5753	.2987	.2417	.5845	.2946	.2617	.58	.3161	.2302	.5691	.2916	.2533	.5711	.3097

Multi-level density analysis on results from existing fixed-dissection filling methods

• The window density variation and violation of the maximum window density in fixed-dissection filling are underestimated

Outline

- Layout Density Control for CMP
- Our Contributions
- Layout Density Analysis
- Local Density Variation

Summary and Future Research

Local Density Variation

- Global density variation does not take into account that CMP polishing pad can adjust the pressure and rotation speed according to pattern distribution
- The influence of density variation between far-apart regions can be reduced by pressure adjustment
- Only a significant density variation between neighboring windows will complicate polishing pad control and cause either dishing or underpolishing

Density variations between <u>neighboring</u> windows

Lipschitz-like Definitions

Local density variation definitions

⊙ Type I:

- max density variation of every r neighboring windows in each row of the fixed-dissection
- The polishing pad move along window rows and only overlapping windows in the same row are neighbored

⊙ Type II:

- max density variation of every cluster of windows which cover one tile
- The polishing pad touch all overlapping windows simultaneously

⊙ Type III:

- > \max_{r} density variation of every cluster of windows which cover $\frac{r}{2} \times \frac{r}{2}$ tiles
- The polishing pad is moving slowly and touching overlapping windows simultaneously

Behaviors of Existing Methods on Smoothness Objectives

Testcase	LP			Greedy			МС			IGreedy			IMC		
T/W/r	Lipl	LipII	LipIII	Lipl	LipII	LipIII	Lipl	LipII	LipIII	Lipl	LipII	LipIII	Lipl	LipII	LipIII
	Spatila Density Model														
L1/16/4	.0832	.0837	.0713	.0712	.0738	.0627	.0678	.0709	.06	.0818	.0824	.063	.0673	.0698	.0597
L1/16/16	.0854	.0868	.0711	.073	.0742	.0644	.0708	.0742	.0643	.0724	.0725	.0617	.0707	.073	.061
L2/28/4	.0414	.0989	.0841	.0412	.096	.0893	.0289	.0947	.0852	.0333	.0883	.0755	.0286	.0873	.0766
L2/28/16	.033	.0642	.0632	.0388	.0713	.0707	.0248	.0658	.0658	.0272	.0619	.0604	.0265	.0631	.0606
	Effective Density Model														
L1/16/4	4.048	4.333	3.864	5.332	5.619	5.19	3.631	4.166	3.448	3.994	4.254	3.132	4.245	4.481	3.315
L1/16/16	.843	.843	.835	.978	1.051	1.051	.814	.847	.847	.839	.847	.847	.763	.77	.77
L2/28/4	2.882	5.782	4.855	2.694	6.587	6.565	1.498	5.579	5.092	2.702	6.317	5.678	2.532	5.64	4.981
L2/28/16	1	1.159	1.159	1.061	1.147	1.147	1.115	1.235	1.23	.936	1.136	1.128	1.112	1.204	1.189

Comparison among the behaviors of existing methods w.r.t Lipschitz objectives

• The solution with the best Min-Var objective value does not always have the best value in terms of "smoothness" objectives

Linear Programming Formulations

Lipschitz Type I

$$p_{ij} \ge 0 \qquad \qquad i, \ j = 0, ..., \ nr \ / \ w - 1$$

$$p_{ij} \le slack \ (T_{ij}) \qquad \qquad i, \ j = 0, ..., \ nr \ / \ w - 1$$

$$\sum_{s=i}^{i+r-1} \sum_{t=j}^{j+r-1} p_{st} \le \alpha_{ij} (U \bullet w^2 - area_{ij}) \qquad i, \ j = 0, ..., \ nr \ / \ w - 1$$

$$W_{ij} - W_{ik} \le L \qquad \qquad i, \ j, \ k = 0, ..., \ nr \ / \ w - 1$$

$$here, \quad W_{ij} = \sum_{s=i}^{i+r-1} \sum_{j+r-1}^{j+r-1} area \ (T_{st}) + \sum_{s=i}^{i+r-1} \sum_{j+r-1}^{j+r-1} p_{st}$$

Lipschitz Type II

$$\min Den(i,j) \le W_{lm} \le \max Den(i,j)$$

$$i,j,k = 0,...,\frac{nr}{w} - 1$$

$$\max Den(i,j) - \min Den(i,j) \le L$$

$$l(m) = i(j) - r,...,i(j) + r$$

Linear Programming Formulations

Lipschitz Type III

$$\min Den(i,j) \le W_{lm} \le \max Den(i,j) \qquad \qquad i,j,k = 0,...,\frac{nr}{w} - 1$$

$$\max Den(i,j) - \min Den(i,j) \le L \qquad \qquad l(m) = i(j) - \frac{r}{2},...,i(j) + \frac{r}{2}$$

Combined Objectives

 linear summation of Min-Var, Lip-I and Lip-II objectives with specific coefficients

Minimize :
$$C_0 * M + C_1 * L_I + C_2 * L_{II}$$

o add Lip-I and Lip-II constraints as well as

$$M \leq W_{ij} \qquad i, j = 0, \dots, nr/w-1$$

Computational Experience

Testcase		Min-V	ar LP		Lipl LP							
T/W/r	Den V	Lip1	Lip2	Lip3	Den V	Lip1	Lip2	Lip3				
Spatial Density Model												
L1/16/4	.0855	.0832	.0837	.0713	.1725	.0553	.167	.1268				
L1/16/8	.0814	.0734	.0777	.067	.1972	.0938	.1932	.1428				
L2/28/4	.1012	.0414	.0989	.0841	.0724	.0251	.072	.0693				
L2/28/8	.0666	.034	.0658	.0654	.0871	.0264	.0825	.0744				
	Effective Density Model											
L1/16/4	.0703	.0045	.0043	.0039	.2662	.004	.0154	.01				
L1/16/8	.1709	.0025	.0025	.0023	.3939	.002	.006	.0052				
L2/28/4	.106	.0029	.0058	.0049	.1051	.0013	.0061	.0061				
L2/28/8	.1483	.0015	.0023	.0022	.1527	.0007	.0024	.0024				

Comparison among LP methods on Min-Var and Lipschitz condition objectives (1)

Computational Experience

Testcase		Lipl	I LP			Lipl	II LP		Comb LP				
T/W/r	DenV	Lip1	Lip2	Lip3	DenV	Lip1	Lip2	Lip3	DenV	Lip1	Lip2	Lip3	
Spatial Density Model													
L1/16/4	.1265	.0649	.0663	.0434	.1273	.0733	.0734	.0433	.1143	.0574	.0619	.0409	
L1/16/8	.1702	.1016	.1027	.0756	.1835	.1158	.1224	.0664	.1707	.0937	.1005	.0766	
L2/28/4	.0888	.0467	.0871	.0836	.0943	.0462	.0928	.0895	.0825	.0242	.0809	.0758	
L2/28/8	.07	.0331	.0697	.0661	.1188	.0594	.1033	.0714	.0747	.0255	.0708	.0656	
	Effective Density Model												
L1/16/4	.1594	.0039	.0047	.0033	.1792	.0043	.0051	.003	.1753	.004	.0045	.0034	
L1/16/8	.2902	.0025	.0025	.0018	.2906	.0028	.0029	.0018	.268	.0021	.0022	.0019	
L2/28/4	.1022	.0029	.0064	.0054	.1039	.0026	.0064	.0052	.0953	.0015	.0057	.0049	
L2/28/8	.1559	.0015	.0023	.0022	.2063	.0018	.0032	.0022	.1382	.0007	.0021	.0021	

Comparison among LP methods on Min-Var and Lipschitz condition objectives (2)

• LP with combined objective achieves the best comprehensive solutions

Outline

- Layout Density Control for CMP
- Our Contributions
- Layout Density Analysis
- Local Density Variation
- Summary and Future Research

Summary and Future Research

- Smoothness gap in existing fill methods
 - for the first time, we show the viability of gridless window analysis for both spatial density model and effective density model
- New smoothness criteria: local uniformity
 - three new relevant Lipschitz-like definitions of local density variation are proposed
- Ongoing research
 - extension of multi-level density analysis to measuring local uniformity w.r.t. other CMP models
 - improved methods for optimizing fill synthesis w.r.t. new local uniformity objectives