

Efficient Wake-Up Scheduling for Multi-Core Systems

Ming-Chao Lee*, Yiyu Shi**, Yu-Guan Chen*, Diana Marculescu***, Shih-Chieh Chang*

* Dept. of CS, National Tsing Hua University, Taiwan
** Dept. of ECE, Missouri University of Science and Technology
*** Dept. of ECE, Carnegie Mellon University

- Introduction
- Problem Formulation
- Efficient Wake-up Scheduling Algorithm
- Experimental Results
- Conclusions

Introduction

- Problem Formulation
- Efficient Wake-up Scheduling Algorithm
- Experimental Results
- Conclusions

Multi-core System

- Multi-core architecture is widely adopted for high performance computing.
- A serious problem for multi-core designs is their large power consumption.

Power Gating Technique

Power gating

- is a well-known technique to suppress the leakage power
- inserts sleep transistors between logic devices and ground rail.

During the power mode transition from "off" to "on", a sudden current may flow through sleep transistors.

- thereby degrading signal and power integrity in the nearby operating devices.
- Wake-up scheduling is to design a wake-up sequence of sleep transistors
 - the total wake-up time is minimized,
 - and without causing IR-drop violations.

Motivation

For a multi-core design, the number of active cores and their locations vary with applications.

An effective multi-core wake-up scheduling should best decide the wake-up order at runtime.

This puts high demand on the on-line scheduling algorithm.

Contributions

We propose an on-line wake-up scheduling framework for the multi-core architecture.

- We first use a heuristic algorithm to construct a *multi-conflict* graph (MCG) from the multi-core design off-line.
- Based on the MCG, we develop a fast linear-time on-line scheduling algorithm to determine the optimal wake-up order for a given set of cores from a task scheduler.

Our approach can achieve 46.01% speedup on average over the industrial approach [4] in the wake-up latency without violating the noise constraint.

Introduction

- Problem Formulation
- Efficient Wake-up Scheduling Algorithm
- Experimental Results
- Conclusions

Problem Formulation

Find the optimal order for turning on a given set of cores at *runtime,* such that the total wake-up time is minimized under the given IR drop bound.

Problem Formulation

This model can be pessimistic.

Determining the optimal wake-up scheduling at runtime is still not an easy task.

Introduction

- Problem Formulation
- Efficient Wake-up Scheduling Algorithm -
 - The Concept of Multi-Conflict Graphe Construction
 - Multi-Conflict Graph (MCG) Construe
 - On-line Scheduling
- Experimental Results

Conclusions

The optimal wakeup scheduling is $(M_3, M_4), M_5$.

Conflict Graph (CG)

- A conflict graph (CG),
 - Each vertex represents core, and
 - each edge represents a conflict between the two vertices

We construct a CG by adding an edge between a pair of vertices/cores that should not be turned on simultaneously.

Multi-Conflict Graph (MCG)

- A multi-conflict graph (MCG) is an undirected graph
 - the vertices form an independent set (*IS*) which is a set of vertices without any edge between them
 - the group of corresponding modules can be turned on simultaneously

 M_2 , M_2 and M_6 from tranks $\rightarrow M_2$, M_2 and M_6 can be not turned on simultaneously.

MCG Construction

On-Line Scheduling Algorithm

*Saturation degree of a vertex is the number of different colors which is connected

- Introduction
- Problem Formulation
- Efficient Wake-up Scheduling Algorithm
- Experimental Results
- Conclusions

Experimental Setup

- We use the TSMC 90nm CMOS technology.
 - 55,794 gate count for each core
 - The size and the wake-up scheduling of sleep transistors for the core are designed appropriately.
 - The maximum wake-up surge current during the wake-up operation and the wake-up time for the core are 240mA and 18ns, respectively.
 - 16-core, 64-core, and 256-core, three different multicore systems so that the topology of cores, the number and the locations of power/ground pads on the multi-core designs are properly designed.

Experimental Results

# o modu mu mod des	of les in lti- dule ign		# of	modules	s to turr	on (mc: Monte Carlo search, og: off-line grouping)							
		8				16				32			
		mc	ours	og	[4]	mc	ours	og	[4]	mc	ours	og	[4]
1	6	72	72	72	144	144	144	144	288	-	-	-	-
6	4	72	72	72	144	144	144	162	288	306	306	360	576
25	6	108	108	144	144	216	216	288	288	450	450	576	576
Aver	age	1.00	1.00	1.11	1.78	1.00	1.00	1.15	1.78	1.00	1.00	1.23	1.58
# o modu mu moo des	nf	# of modules to turn on (mc: Monte Carlo search, og: off-line grouping)											
	es in	64				128				256			
	lti- lule ign	mc	ours	og	[4]	mc	ours	og	[4]	mc	ours	og	[4]
1	6	-	-	-	-	-	-	-	-	-	-	-	-
6	4	720	720	864	1152	-	-	-	-	-	-	-	-
256		954	972	1134	1152	1998	2016	2268	2304	4140	4176	4608	4608
Aver	age	1.00	1.01	1.19	1.40	1.00	1.01	1.14	1.15	1.00	1.01	1.11	1.11

- Introduction
- Problem Formulation
- Efficient Wake-up Scheduling Algorithm
- Experimental Results
- Conclusions

Conclusions

- In this paper, we discuss the wake-up scheduling for multi-core systems.
- We propose
 - an off-line algorithm to characterize the multi-conflict graph (MCG) for the multi-core design, and
 - an on-line scheduling algorithm to efficiently decide the order of turning-on cores.

For a 256-module system, the wake-up latency for our approach on average achieves 23.06% and 23.67% wake-up latency reduction compared with [16] and [4], respectively.

Thanks for your attention