Routability-driven Placement Algorithm for Analog Integrated Circuits

Cheng-Wu Lin, Cheng-Chung Lu, Jai-Ming Lin, and Soon-Jyh Chang

March 27, 2012

Department of Electrical Engineering National Cheng Kung University, Tainan, Taiwan

Outline

- Introduction to Analog Placement
- Routability-driven Analog Placement
- Congestion Estimation
- Placement Expansion
- Proposed Placement Flow
- Experimental Results
- Conclusion

Analog Placement Considerations

- Basic constraints
 - Matching interdigitated placement, common-centroid placement
 - Symmetry symmetric placement
 - Proximity adjacent placement
 - Other considerations
 - Thermal effects, stress gradients, etc.

Interdigitated placement

Common-centroid placement

Symmetry constraint

Proximity constraint

- Constructive method
 - Generate placement according to schematic topology [Mehranfar, JSSC'91] or signal paths [Long et al., ASP-DAC'06]

- Constructive method
 - Generate placement according to schematic topology [Mehranfar, JSSC'91] or signal paths [Long et al., ASP-DAC'06]

- Constructive method
 - Generate placement according to schematic topology [Mehranfar, JSSC'91] or signal paths [Long et al., ASP-DAC'06]
- Deterministic algorithm
 - Enumerate all possible placements for the basic module sets, and then combine these placements hierarchically [Strasser et al., ICCAD'08]

- Constructive method
 - Generate placement according to schematic topology [Mehranfar, JSSC'91] or signal paths [Long et al., ASP-DAC'06]
- Deterministic algorithm
 - Enumerate all possible placements for the basic module sets, and then combine these placements hierarchically [Strasser et al., ICCAD'08]

- Constructive method
 - Generate placement according to schematic topology [Mehranfar, JSSC'91] or signal paths [Long et al., ASP-DAC'06]
- Deterministic algorithm
 - Enumerate all possible placements for the basic module sets, and then combine these placements hierarchically [Strasser et al., ICCAD'08]
- Statistical algorithm
 - Apply simulated annealing (SA) algorithm with floorplan representations

Representations for Analog Placement

- Topological representation is a popular method for modern VLSI design
 - Smaller solution space (compared with absolute representation)
 - Need specific techniques to deal with placement constraints
- Previous work of handling symmetry constraint
 - Sequence-pairs [Balasa & Lampaert, DAC'99]
 - O-trees [Pang et al., DAC'00]
 - Binary trees [Balasa, ICCAD'00]
 - TCG-S [Lin et al., ASP-DAC'05]
 - CBL [Liu et al., ASP-DAC'07]
- Previous work of tackling common-centroid constraint
 - C-CBL [Ma et al., ICCAD'07]
 - B*-trees [Strasser et al., ICCAD'08]
 - Sequence-pairs [Xiao & Young, ASP-DAC'09]

Routability-driven Analog Placement

- One of the objective function in SA algorithm is to minimize chip area, which makes blocks compact to the lower-left corner
- For analog design, a compact placement is not practical
- Routing over the active areas of analog devices is usually avoided to reduce parasitics and cross-talk effects
- Reserve enough spaces between the devices for laying out wires

Review of Congestion-aware Placement

- Congestion-aware placement for analog circuits [Xiao et al., ICCAD'10]
 - Whole placement region is divided into an n×n mesh, and vertical and horizontal congestions are estimated for each room
 - Rooms are expanded column-by-column and row-by-row based on the congestion map

Symmetry constraint must be satisfied after placement expansion

Problem Formulation

- Given a set of devices and topological placement constraints
 - The active areas of all devices are considered as routing blockages
 - Routing congestion in the resulting placement P is minimized
 - All topological constraints are satisfied in the resulting placement P
 - Cost function $\Phi(P)$:

 $\Phi(P) = \alpha \times A_P + \beta \times W_P + \gamma \times C_P$

 A_P : bounding-rectangle area of the placement W_P : total wire length measured by half-perimeter estimation C_P : estimation of routing congestion

Overview of Our Placement Flow

- The way to predict congestion accurately is to use the same technique and parameters in both congestion estimation and global routing [Pan & Chu, ICCAD'06]
 - Congestion-driven Steiner tree construction can be used for congestion estimation and global routing
 - Previous work: FastRoute [Pan & Chu, ICCAD'06], NTHU-Route [Chang et al., ICCAD'08]

- The way to predict congestion accurately is to use the same technique and parameters in both congestion estimation and global routing [Pan & Chu, ICCAD'06]
 - Congestion-driven Steiner tree construction can be used for congestion estimation and global routing
 - Previous work: FastRoute [Pan & Chu, ICCAD'06], NTHU-Route [Chang et al., ICCAD'08]

- The way to predict congestion accurately is to use the same technique and parameters in both congestion estimation and global routing [Pan & Chu, ICCAD'06]
 - Congestion-driven Steiner tree construction can be used for congestion estimation and global routing
 - Previous work: FastRoute [Pan & Chu, ICCAD'06], NTHU-Route [Chang et al., ICCAD'08]

- The way to predict congestion accurately is to use the same technique and parameters in both congestion estimation and global routing [Pan & Chu, ICCAD'06]
 - Congestion-driven Steiner tree construction can be used for congestion estimation and global routing
 - Previous work: FastRoute [Pan & Chu, ICCAD'06], NTHU-Route [Chang et al., ICCAD'08]

- The way to predict congestion accurately is to use the same technique and parameters in both congestion estimation and global routing [Pan & Chu, ICCAD'06]
 - Congestion-driven Steiner tree construction can be used for congestion estimation and global routing
 - Previous work: FastRoute [Pan & Chu, ICCAD'06], NTHU-Route [Chang et al., ICCAD'08]
- Proposed congestion map generation:

Congestion Map Generation with Analog Devices

• Grid graph model for global routing:

 Since the active areas of all devices are considered as routing blockages, we reduce global edge capacities of a bin if the bin is occupied by some devices

Congestion Map Generation with Analog Devices

Overview of Our Placement Flow

Placement Expansion

- To eliminate routing overflow, we slightly expand congested regions of a compact placement
 - Placement expansion for non-symmetry modules
 - Placement expansion for symmetry groups
- Dummy nodes are inserted into ASF-B*-trees or HB*-trees for placement expansion

Review of ASF-B*-tree

- Concept of symmetry islands [Lin & Lin, DAC'07]
 - Matching devices should be placed at proximity to reduce mismatch [Pelgrom et al., JSSC'89]
 - Each module should abut at least one of the other modules in the same symmetry group
 - A symmetry island defines a symmetric placement, in which devices form a connected placement

Symmetry group: S = { $(M_1, M_2), (M_3, M_4)$ }

Review of ASF-B*-tree

- Concept of symmetry islands [Lin & Lin, DAC'07]
 - Matching devices should be placed at proximity to reduce mismatch [Pelgrom et al., JSSC'89]
 - Each module should abut at least one of the other modules in the same symmetry group
 - A symmetry island defines a symmetric placement, in which devices form a connected placement
- Automatically symmetric-feasible B*-tree (ASF-B*-tree) is used to represent a symmetry island

Review of HB*-tree

- Hierarchical B*-tree (HB*-tree) deals with the placement of symmetry islands and non-symmetry modules
- Hierarchy nodes can handle the groups which require matching, symmetry, and proximity constraints

Placement Expansion for Non-symmetry Modules

Placement Expansion for Non-symmetry Modules

Placement Expansion for Non-symmetry Modules

Placement Expansion for Symmetry Groups

Placement Expansion for Symmetry Groups

 ASF-B*-trees guarantee that each symmetry group remains symmetric after placement expansion

Placement Expansion for Symmetry Groups

 ASF-B*-trees guarantee that each symmetry group remains symmetric after placement expansion

Outline

- Introduction to Analog Placement
- Routability-driven Analog Placement
- Congestion Estimation
- Placement Expansion
- Proposed Placement Flow
- Experimental Results
- Conclusion

Proposed Placement Flow

Proposed Placement Flow

Experimental Results

- Platform: 2.5GHz SUN Fire-X4250 workstation with 16GB RAM
- Benchmark: two MCNC benchmark circuits

Circuit	# of mod.	# of sym. mod.	Mod. area (<i>mm</i> ²)		
ami33	33	7 (2+2+2+1)	1.16 = 100%		
ami49	49	5 (2+2+1)	35.45 = 100%		

Experimental Results

- Platform: 2.5GHz SUN Fire-X4250 workstation with 16GB RAM
- Benchmark: two MCNC benchmark circuits

Circuit	Without placement expansion			With placement expansion				
	Area (%)	HPWL (<i>mm</i>)	# of overflow	Time (sec.)	Area (%)	HPWL (<i>mm</i>)	# of overflow	Time (sec.)
ami33	107.11	37.38	154	103	113.25	47.73	0	556
ami49	108.44	569.25	253	206	115.32	677.24	0	1337

Experimental Results

- Platform: 2.5GHz SUN Fire-X4250 workstation with 16GB RAM
- Benchmark: two MCNC benchmark circuits
- Symmetry property is maintained after placement expansion

Conclusion

- Analog placement considering routability was introduced
 - The active areas of all devices are considered as routing blockages
 - Routing congestion in the resulting placement is minimized
 - Symmetry constraint must be satisfied after placement expansion
- ASF-B*-trees were used for maintaining the symmetry property after placement expansion
- Future work
 - Consider symmetric routing during the congestion estimation

Questions or Comments

Thank you!