

Physical Synthesis of Bus Matrix for High Bandwidth Low Power On-chip Communications

Renshen Wang¹, Evangeline Young², Ronald Graham¹ and Chung-Kuan Cheng¹

> ¹University of California San Diego ²The Chinese University of Hong Kong

Outline of This Talk

- Trends of on-chip communications
 Bandwidth requirement
 - Bandwidth requirement
 - Bus → bus matrix, network-on-chip
 - Power consumption
 - Low power design techniques
- Optimizations and tradeoffs in physical synthesis of bus matrix
 - □ Bus gating on Steiner graph (power)
 - Weighted Steiner graph (bandwidth)
 - Edge merging heuristic (wire length)

Introduction

- Importance of low power
 - Heat removal, battery life, performance, electricity, envioronment...

NVIDIA Tegra chip

- SoC communication power increasing
 - □ Advances in manufacturing process \rightarrow more components (*n*) \rightarrow higher throughput (*n*^{1.xx?})
 - Long wires (global on-chip interconnect) relatively scaling up on power
- Goal: power efficiency on data throughput
 □ Simple bus → power efficient bus

Bus vs. NoC

Bus / Bus matrix and Network-on-chip comparisons

	Bus	NoC			
Power	Bus gating	Packet, routing			
Latency		8			
Bandwidth	Bus matrix	Flexibility			

Bus Matrix Overview

Buses allowing multiple transactions AMBA AHB/AXI protocols, *etc*

- Example: a full (high bandwidth) bus matrix
 - Power efficient, but not wire efficient

Problem Formulations

Communication constraint graph

- \Box Bipartite graph G = (U, W, A)
- □ U : set of masters
- □ W : set of slaves
- \Box A: set of arcs, arc (*u*, *w*) means *u* accesses *w*
- Given a placement and a communication constraint graph G, find a bus matrix with

 \square Bandwidth capability for G

Each component can have at most 1 connection at a time

- Minimal power on data (path length)
- Minimal wires

Ideal Bus Matrix

- Definition 1: Given G = (U, W, A) and placement function $P: U \cup W \rightarrow R^2$, an ideal bus matrix graph is a weighted graph $\Theta = (V, E, \omega)$ that
- $U \subset V$ Computationally • $W \subset V$ expensive • For any $A' \subseteq A$ such that $\forall (u_i, w_i), (u_j, w_j) \in A', i \neq j \Rightarrow u_i \neq u_j \text{ and } w_i \neq w_j,$ there is a set of paths $\Pi' \subseteq \Pi$, such that No common vertex $\circ |\Pi'| = |A'|$ $\circ \forall r \in \Pi', r \subseteq V \cup E$ $\circ \forall (u, v) \in A', \exists r \in \Pi' \text{ such that } u \in r, v \in r, \text{ and}$ $\sum_{(i,j)\in r} \|P(i) - P(j)\|_1 = \|P(u) - P(v)\|_1$ o $\forall e \in E, |\{r \in \Pi' : e \in r\}| \le \omega(e)$ Path is shortest • Minimize $L(\Theta) = \sum_{(u,v) \in E} \omega((u,v)) \|P(u) - P(v)\|_1$

Practical Formulation

- Definition 2: Given G = (U, W, A) and placement function P : U ∪ W → R², a bus matrix graph is a weighted graph H = (V, E,ω) with a set of paths ρ: A → Π that
 - $U \subseteq V$
 - $W \subseteq V$
 - $\forall a \in A, \ \rho(a) \subseteq V \bigcup E$

With fixed paths, no realtime computation needed

- $\forall (u, v) \in A$, $\sum_{(i,j)\in\rho(a)} \|P(i) - P(j)\|_1 = \|P(u) - P(v)\|_1$ Path is shortest
- For any $A' \subseteq A$ such that $\forall (u_i, w_i), (u_j, w_j) \in A', i \neq j \Rightarrow u_i \neq u_j \text{ and } w_i \neq w_j,$ we have $\forall e \in E, |\{a \in A' : e \in \rho(a)\}| \leq \omega(e)$

• Minimize $L(H) = \sum_{(u,v)\in E} \omega((u,v)) \|P(u) - P(v)\|_1$

Constructing a Solution

- Communication & placement are given
 Number of paths fixed
 - Path length fixed (Manhattan distance)

Generate a structure for min wire length

Graph Construction Algorithm

- 1. Generate a shortest-path Steiner graph
 - Algorithm from "Low Power Gated Bus Synthesis using Shortest-Path Steiner Graph for System-on-Chip Communications" DAC 2009
- 2. Pick a shortest path for each arc (u_i, w_j) in A

Randomly pick one if multiple shortest paths exist, to distribute the "load" evenly on graph edges

3. Compute edge weight for each edge in the Steiner graph

Minimum Rectilinear Steiner Arborescence (MRSA)

Steiner tree w/ shortest root-to-leaf paths

Constructed by merging sub-trees with the furthest merging point from the root

"Efficient algorithms for the minimum shortest path Steiner arborescence problem..." by Cong, Kahng & Leung. IEEE TCAD 1998

Shortest-path Steiner Graph

- Multiple MRSA constructions
 - Each master device as a root
 - □1st MRSA
 - From the 2nd MRSA, wires can be shared

Given existing Steiner graph G, source s_k , terminals t_1, \dots, t_n , and v_1, \dots, v_N are same as in RSA/G; Routine Necessitate(vertex v); $U \leftarrow \{u \in G \text{ and exists a wire path from } \}$ v to u of length $\Delta_{s_k}(v) - \Delta_{s_k}(u)$; $T' \leftarrow T' \bigcup \{u_m \in U \text{ with minimum } \Delta_{s_k}(u)\};$ $T' \leftarrow \phi$: for i = 1 to n do Necessitate (t_i) ; $P \leftarrow \phi$: for i = 1 to N do if $v_i \in T'$ then $P \leftarrow P \bigcup \{v_i\};$ (\mathbf{TMO}) $X \leftarrow P \bigcap \{ v_j | \Delta_{s_k}(v_j) = \Delta_{s_k}(v_i) + \Delta(v_i, v_j) \};$ if $(|X| \ge 1 \text{ and } v_i \in G)$ then (SMO)for each $(u \in X)$ connect (v_i, u) ; $P \leftarrow P \cap \overline{X};$ Necessitate (v_i) ; else if $(|X| \ge 2)$ then (SMO)merge the nodes in X rooted at v_i $P \leftarrow (P \cap \overline{X}) \bigcup \{v_i\};$ (the MRSA rooted at s_k is added to G) return:

Edge Weight by Max-Matching

 To allow multiple transactions/paths, add edge weight (multiple bus lines)

Reducing Wire Length

- High bandwidth+short paths \rightarrow more wires
- Loosen the shortest-path constraint
 - \Box E.g. (1+ ε) Manhattan distance
 - \Box Merge parallel edges \rightarrow reduce wires
 - Low increase on path length / dynamic power

Parallel Segment Merging

Iteratively, find parallel double segments

 $\Box \Delta l$ – edge length (not wire length) reduction

 $\Box \Delta p$ – possible path length increase

 \Box Merge the pair with maximum $\Delta l / \Delta p$

Overall Flow

Given a communication graph G = (U, W, A), and a location function $P: U \bigcup W \mapsto R^2$ 1. Generate shortest-path Steiner graph $S_G = (V, E)$ by the algorithm in [14]; 2. Repeat For each arc $a = (u, v) \in A$, find a shortest path $\rho(a)$ from u to v; For each edge $e \in E$, $A' \leftarrow \{a \in A : e \in \rho(a)\};$ $\omega(e) \leftarrow \text{Max_match}(A');$ Bus matrix graph $H_i = (V, E, \omega);$ $i \leftarrow i + 1;$ Find the parallel segments with maximum $\frac{\Delta l}{\Delta n}$; Merge the two segments into one in S_G ; Until (S_G has no parallel segments with $\Delta l > 0$) 3. Evaluate all the bus matrix graphs $\{H_i\}$

Low complexity in each iteration Most time consumed by max-matching O(|U+W||A||E|)

Experimental Results

- Same random cases as in [Wang09]
- Maximum bandwidth guaranteed
 Min-power bus matrix (w/o segment merging)
 Min-wire bus matrix

Experimental Results (cont.) Min-power to Min-wire, on average Total wire length reduced by 15.5% Average path length increased by 4.4%

$\operatorname{Case}(m,n)$	$\sum L_p$	$\overline{L_p}$	$\sum L_e$	$\sum L_{wire}$	Case(m, n)	$\sum L_p$	$\overline{L_p}$	$\sum L_e$	$\sum L_{wire}$
T0(3,16)	30500	635	5700	9300	T0(3,16)	31500	656	5000	9200
T1 (3,16)	84200	1754	5700	10500	T1 $(3,16)$	84200	1754	5700	10500
T2(2,30)	40122	669	6961	10117	T2(2,30)	42654	710	4171	8931
T3 (3,16)	33179	691	4240	7168	T3(3,16)	33185	691	4240	7168
T4 (5,15)	51660	689	6524	14136	T4(5,15)	56340	751	4190	10911
T5~(6,16)	66626	694	9427	23038	T5 (6,16)	69494	724	6777	18232
T6(8,8)	44078	689	6631	14606	T6(8,8)	48234	754	4812	12445
T7 (12,6)	47282	657	7456	15702	T7 (12,6)	48154	669	6202	12988
T8 (16,10)	109278	683	10453	32429	T8 (16,10)	116602	729	7584	23732
T9(8,16)	79110	618	9529	27274	T9(8,16)	83108	649	6717	20761
T10 (8, 16)	95828	749	8828	27663	T10(8,16)	101702	795	5359	18492
T11 $(6,12)$	48130	668	5946	14265	T11 $(6,12)$	48440	672	5735	13271
T12(12,12)	96276	669	9747	27497	T12(12,12)	100832	700	7717	21348

Experimental Results (cont.)

 Total wire length vs. total edge length along parallel segment merging operations
 First decreasing (less edges)

□ Then increasing (longer paths)

Experimental Results (cont.)

Tradeoff between wire & power

Tradeoff between wire & bandwidth

Conclusions

On chip bus matrix can be strong at

Performance

- Small delay (by centralized arbitration & control)
- Consistent bandwidth
- Efficiency
 - on power (shortest connections)
 - on wire (sharing bus lines in Steiner graphs)

More possibilities

- □ Architectures (AMBA AHB, CoreConnect...)
- Communication patterns

Questions & Answers

Thank you for your attention!