
Seeing the Forest and the
Trees: Steiner Wirelength
Optimization in Placement

Jarrod A. Roy, James F. Lu and Igor L. Markov
University of Michigan Ann Arbor

April 10, 2006

Motivation
Place-and-route

Single step for designers ?
Implemented as separate point tools
Very little interaction/communication
Use different optimization objectives

Our goal: reduce the gap between
placement and routing

HPWL is the wrong objective
Must optimize something else !

Empirical results: consistent improvement
over all published P&R results

Routability, routed wirelength, via counts

HPWL vs. Steiner Tree WL

HPWL ≤ Steiner Tree WL (= for 2- and 3-pin nets)
Computing HPWL takes linear time, but Steiner trees are NP-hard
Steiner Tree tools we evaluate:

Batched Iterated 1-Steiner (BI1ST) [Kahng,Robins 1992]
Slow (n3)
Very accurate, even for 20+ pins

FastSteiner [Kahng,Mandoiu,Zelikovsky 2003]
Faster but less accurate than BI1ST

FLUTE [Chu 2004, 2005]
Very fast
Optimal lookup tables for ≤9 pins, less accurate for 10+ pins

Half-perimeter
wirelength

Steiner (tree)
wirelength

Existing Placement Framework
Consider placement bins
Partition them

Use min-cut bisection
Place end-cases optimally

Propagate terminals
before partitioning

Terminals: fixed cells or
cells outside current bin
Assigned to one of partitions

Save runtime: a 20-pin may
“propagate” into 3-pin net

“Inessential nets”: fixed terminals in both partitions
(can be entirely ignored)

Traditional min-cut placement tracks HPWL

1 2

3 4

Placement bins

End-case
placement

pins of one net
propagated

Introduced in Theto placer
[Selvakkumaran 2004]
Refined in [Chen 2005]

Shown to accurately track HPWL
Use 1 or 2 hyper-edges
to represent each net for partitioning

Weights given by costs wleft, wright, wcut
wleft: HPWL when all cells on left side (a)
wright: HPWL when all cells on the right (b)
wcut: HPWL when cells on both sides (c)

Better Modeling of HPWL
by Net Weights In Min-cut

Figure from [Chen,Chang,Lin 2005]

Key Observation

For bisection,
cost of each net is characterized by 3 cases

Cost of net when cut wcut

Cost of net when entirely in left partition: wleft

Cost of net when entirely in right partition: wright

In our work, we compute these costs
for a different placement objective

Real difficulty in data structures!

Our Contributions
Optimization of Steiner WL

In global placement (runtime penalty ~30%)
In detail placement

Whitespace allocation to tame congestion
Empirical evaluation of ROOSTER

No violations on 16 IBMv2 benchmarks (easy + hard)
Consistent improvements of published results
4-10% by routed wirelength
10-15% by via counts

Optimizing Steiner WL
During Global Placement
Recall – each net can be modeled by 3 numbers

This has only been applied to HPWL optimization
We calculate wleft, wright, wcut using Steiner evaluator

For each net, before partitioning starts
The bottleneck is still in partitioning
→ can afford a fast Steiner-tree evaluator

Pitfall : cannot propagate terminals !
Nets that were inessential are now essential
Must consider all pins of each net
More accurate modeling, but potentially much slower

Pointsets with multiplicities: two per net
Unique locations of fixed & movable pins

At top placement layers, very few unique pin
positions (except for fixed I/O pins)

Maintain the number of pins at each location
Fast maintenance when pins
get reassigned to partitions (or move)

Allows to efficiently compute the 3 costs

New Data Structure
for Global Placement

44
22

66

11

Results depend on the Steiner tree evaluator
We choose FastSteiner (vs BI1ST and FLUTE)
See Appendix B for detailed comparison

Impact of changes to global placement
Results consistent across IBMv2 benchmarks
Steiner WL reduction: 2.9%
HPWL grows by 1.3%
Runtime grows by 27%

Improvement in Global Placement

Optimizing Steiner WL
in Detail Placement
We leverage the speed of FLUTE
with two sliding-window optimizers

Exhaustive enumeration for 4-5 cells in a single row
Interleaving by dynamic programming (5-8 cells)

Fast but not always optimal
Using both reduces Steiner WL by 0.69%, routed WL by 0.72%
and consumes 11.83% of [global + detail] placement runtime

Much faster than single-trunk tree optimization from
[Jariwala,Lillis 2004]

Our optimization seems stronger, not restricted to FPGAs

Congestion-based Cutline Shifting
To reduce congestion ROOSTER
allocates whitespace non-uniformly
Based on the WSA technique [Li 2004]

WSA is applied after detail placement
(our technique is used during global placement)
Identifies congested regions
Injects whitespace, causing cell overlap
Legalization and re-placement is required
Detail placement recovers HPWL

Congestion-based Cutline Shifting
Our technique is applied pro-actively during mincut

No need for “re-placement” and legalization
This improves via counts

Periodically, build up-to-date congestion maps
Use congestion maps from [Westra 2004]
Estimate congestion for each existing placement bin

Cutlines shifted to equalize congestion in bins

15% WS 15% WS

Cong: 100 Cong: 200

10% WS 20% WS

Cong:
150

Cong: 150

Empirical Results: IBMv2

7/16Not published1.093FengShui 2.6
1/16Not published1.107Dragon 3.01
0/16Not published1.056Capo 9.2
1/81.1191.042APlace 1.0
0/161.1561.055mPL-R+WSA
0/161.0001.000ROOSTER

10/161.2301.097FengShui 5.1
2/161.0730.968APlace 2.04
0/161.0691.007mPL-R+WSA

ROOSTER: Rigorous Optimization Of Steiner Trees Eases Routing

Routed WL Ratio Via Ratio
Routes with

ViolationPublished results:

Most recent results:

ROOSTER with several
detail placers: IBMv2

16/161.2481.114ROOSTER+
FengShui 5.1 DP

2/161.0891.041ROOSTER+
Dragon 4.0 DP

0/161.0040.990ROOSTER+WSA

0/161.0001.000ROOSTER

Routed WL Ratio Via Ratio
Routes with

Violation

Improvement Breakdown: IBMv2 easy

V = Violations

Improvement Breakdown: IBMv2 hard

Congestion with and without

Capo -uniformWS

5 hours to route; 120 violations

ROOSTER

22 mins to route; 0 violations

Conclusions

Steiner WL should be optimized
in global and detail placement

Improves routability and routed WL
10-15% improvement in via counts
Better Steiner evaluators may further reduce routed WL

Congestion-driven cutline shifting in global
placement is competitive with WSA

Better via counts
May be improved if better congestion maps available

ROOSTER freely available for all uses
http://vlsicad.eecs.umich.edu/BK/PDtools

Questions?

Huang & Kahng, ISPD1997
Quadrisection can bias min-cut objective
to Minimum Spanning Tree [Huang,Kahng 1997]

Loses accuracy by gridding terminals
2x2 MST equivalent to 2x2 Steiner
Need much larger grid to truly optimize Steiner WL

Compared to our work, Huang & Kahng…
Did not handle Steiner trees, only MSTs
(handling Steiner trees may require 4x4 geometric partitioner)
Did not handle terminals very accurately
(which seems to be the key)
Never evaluated the results with a router (!)

