A Fast Algorithm for Rectilinear Steiner Trees with Length Restrictions on Obstacles

Stephan Held and Sophie Spirkl

Research Institute for Discrete Mathematics, University of Bonn

ISPD, March 30-April 2, 2014

1 / 24

Reach-Aware Steiner Trees

Definition (Reach-aware Steiner tree)

Input:

- terminals T,
- rectilinear obstacles R,
- a reach length $L \in [0, \infty]$.

A Steiner tree Y connecting T is reach-aware if the length of each connected component in the intersection of Y with the interior of the blocked area $(\bigcup_{r \in R} r)^{\circ}$ is bounded by L.

- All objects are considered to be in \mathbb{R}^2 with the ℓ_1 -norm.
- This formulation does not depend on representation of blocked area, therefore we will assume R to be a set of rectangles.

Problem Formulation

Reach-aware Steiner tree problem

Find a reach-aware Steiner tree of minimum length.

Reach-aware Steiner tree problem

Find a reach-aware Steiner tree of minimum length.

Previous Result

Müller-Hannemann and Peyer [2003]:

- Steiner tree algorithm on augmented Hanan grid
- 2-approximation with super-quadratic running time and space
- $\blacktriangleright \frac{2k}{2k-1}\alpha\text{-approximation}$ for rectangles, where α is the approximation ratio in graphs

Let k = |T| + |R| denote the size of the input.

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of terminals of size $O(k^2 \log k)$ can be computed in $O(k^2 \log k)$ time.

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in $O((k \log k)^2)$ time.

► If the number of corners of each rectilinear obstacle is bounded by a constant, the running time is O(k(log k)²).

Let k = |T| + |R| denote the size of the input.

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of terminals of size $O(k^2 \log k)$ can be computed in $O(k^2 \log k)$ time.

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in $O((k \log k)^2)$ time.

► If the number of corners of each rectilinear obstacle is bounded by a constant, the running time is O(k(log k)²).

We construct the reach-aware visibility graph with the following properties:

- ► There is a reach-aware shortest path between every pair of terminals.
- Every subset of the edge set is reach-aware.

Lemma

A minimum terminal spanning tree is a 2-approximation.

We construct the reach-aware visibility graph with the following properties:

- ► There is a reach-aware shortest path between every pair of terminals.
- Every subset of the edge set is reach-aware.

Lemma

A minimum terminal spanning tree is a 2-approximation.

For L = 0, Clarkson et al. [1987] proved that a graph containing shortest paths between all terminals of size $\mathcal{O}(k \log k)$ can be computed in $\mathcal{O}(k (\log k)^2)$ time.

We generalized their construction.

Clarkson graph

Other previous results include:

- ▶ PTAS by Min et al. [2003]
- 2-approximations by Lin et al. [2008], Long et al. [2008], Liu et al. [2009]
- Exact algorithm by Huang et al. [2013]

7 / 24

For L = 0, Clarkson et al. [1987] proved that a graph containing shortest paths between all terminals of size $\mathcal{O}(k \log k)$ can be computed in $\mathcal{O}(k (\log k)^2)$ time.

We generalized their construction.

Clarkson graph

Other previous results include:

- PTAS by Min et al. [2003]
- 2-approximations by Lin et al. [2008], Long et al. [2008], Liu et al. [2009]
- Exact algorithm by Huang et al. [2013]

7 / 24

The set of endpoints ${\ensuremath{\mathcal E}}$ contains all terminals and obstacle corners.

The bounding box of two endpoints is empty, if it intersects no other endpoint.

Endpoints

Lemma (Clarkson et al. [1987])

A shortest obstacle-avoiding path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and obstacle-avoidance.

Goal

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and reach-awareness.

▶ The lemma does not hold in the reach-aware case:

Goal

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and reach-awareness.

The lemma does not hold in the reach-aware case:

Goal

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and reach-awareness.

The lemma does not hold in the reach-aware case:

A mirror point (blue square) is the endpoint of an axisparallel connection across an obstacle at a non-convex corner (green disk).

> From now on, we only consider the extended set of endpoints *E*, which contains terminals, obstacle corners and mirror points.

A mirror point (blue square) is the endpoint of an axisparallel connection across an obstacle at a non-convex corner (green disk).

A mirror point (blue square) is the endpoint of an axisparallel connection across an obstacle at a non-convex corner (green disk).

From now on, we only consider the extended set of endpoints *E*, which contains terminals, obstacle corners and mirror points.

A mirror point (blue square) is the endpoint of an axisparallel connection across an obstacle at a non-convex corner (green disk).

From now on, we only consider the extended set of endpoints *E*, which contains terminals, obstacle corners and mirror points.

For two points s and t, their closed bounding box is empty, if it contains no endpoints except for s and t.

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an l_1 -shortest path.

This modification preserves length and reach-awareness.

For two points s and t, their closed bounding box is empty, if it contains no endpoints except for s and t.

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and reach-awareness.

S

still not empty

For two points s and t, their closed bounding box is empty, if it contains no endpoints except for s and t.

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and reach-awareness.

 $q \bullet$

empty

s

For two points s and t, their closed bounding box is empty, if it contains no endpoints except for s and t.

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and reach-awareness.

For two points s and t, their closed bounding box is empty, if it contains no endpoints except for s and t.

still empty

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and reach-awareness.

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and reach-awareness.

This fixes the earlier example:

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

- the bounding box of two consecutive endpoints is empty, and
- its restriction to that bounding box is an ℓ_1 -shortest path.

This modification preserves length and reach-awareness.

This fixes the earlier example:

- Take a set of points
- Insert vertical line at median of *x*-coordinates
- Connect all points to median line
- Proceed recursively left and right
- ▶ Size $\mathcal{O}(k \log k)$
- Contains shortest paths between terminals

- Take a set of points
- Insert vertical line at median of *x*-coordinates
- Connect all points to median line
- Proceed recursively left and right
- ▶ Size $\mathcal{O}(k \log k)$
- Contains shortest paths between terminals

- Take a set of points
- Insert vertical line at median of *x*-coordinates
- Connect all points to median line
- Proceed recursively left and right
- ▶ Size $\mathcal{O}(k \log k)$
- Contains shortest paths between terminals

- Take a set of points
- Insert vertical line at median of *x*-coordinates
- Connect all points to median line
- Proceed recursively left and right
- Size $\mathcal{O}(k \log k)$
- Contains shortest paths between terminals

- Take a set of points
- Insert vertical line at median of *x*-coordinates
- Connect all points to median line
- Proceed recursively left and right
- Size $\mathcal{O}(k \log k)$
- Contains shortest paths between terminals

- Take a set of points
- Insert vertical line at median of *x*-coordinates
- Connect all points to median line
- Proceed recursively left and right
- Size $\mathcal{O}(k \log k)$
- Contains shortest paths between terminals

- Insert medians lines recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

- Insert medians lines recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

- Insert medians lines recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 1: median unblocked

Case 1

- Mirror points ensure that if unblocked for one point, then for both
- Add path as shown if reach-aware
- ► If ℓ₁-shortest reach-aware path exists, then this path is one

- Insert medians lines recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 2a: blocked, can cross

- Insert medians lines recursively
- Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 2b

- Pairs of non-convex obstacle corners of the same obstacle
- Connect diagonally

There are few such connections in practice.

Case 2b: cannot cross

Instance

- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

Instance

- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

Instance

- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

- Instance
- Collect endpoints and compute mirror points
- Insert medians recursively
- Connect points along obstacle boundaries
- Extract Steiner tree

Let $k = |{\cal T}| + |{\cal R}|$ denote the size of the input, l the maximum number of corners of an obstacle.

- There are $\mathcal{O}(k)$ endpoints in \mathcal{E}
- Each endpoint is connected to $\mathcal{O}(\log k)$ medians
- \blacktriangleright Including diagonal edges, such a connection increases the graph size by $\mathcal{O}(l)$

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of terminals of size $O(kl \log k)$ can be computed in $O(k \log k \cdot (l + \log k))$ time.

Let $k = |{\cal T}| + |{\cal R}|$ denote the size of the input, l the maximum number of corners of an obstacle.

- There are $\mathcal{O}(k)$ endpoints in \mathcal{E}
- Each endpoint is connected to $\mathcal{O}(\log k)$ medians
- \blacktriangleright Including diagonal edges, such a connection increases the graph size by $\mathcal{O}(l)$

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of terminals of size $O(kl \log k)$ can be computed in $O(k \log k \cdot (l + \log k))$ time.

Let $k = \left|T\right| + \left|R\right|$ denote the size of the input, l the maximum number of corners of an obstacle.

- There are $\mathcal{O}(k)$ endpoints in \mathcal{E}
- Each endpoint is connected to $\mathcal{O}(\log k)$ medians
- ▶ Diagonal edges take time O(1), others need to check reach-awareness in O(log k)

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of terminals of size $O(kl \log k)$ can be computed in $O(k \log k \cdot (l + \log k))$ time.

Let $k = |{\cal T}| + |{\cal R}|$ denote the size of the input, l the maximum number of corners of an obstacle.

- The visibility graph contains reach-aware shortest paths between all terminals
- There are no Steiner points on obstacles
- Any Steiner tree in the visibility graph is reach-aware

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in $O(kl \log k(\log l + \log k))$ time.

We used a Dijkstra-Kruskal approach of Liu et al. [2009] with running time $\mathcal{O}(m\log m)$ for m edges.

Let $k = \left|T\right| + \left|R\right|$ denote the size of the input, l the maximum number of corners of an obstacle.

- The visibility graph contains reach-aware shortest paths between all terminals
- There are no Steiner points on obstacles
- Any Steiner tree in the visibility graph is reach-aware

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in $O(kl \log k(\log l + \log k))$ time.

We used a Dijkstra-Kruskal approach of Liu et al. [2009] with running time $\mathcal{O}(m\log m)$ for m edges.

Let $k = \left|T\right| + \left|R\right|$ denote the size of the input, l the maximum number of corners of an obstacle.

- The visibility graph contains reach-aware shortest paths between all terminals
- There are no Steiner points on obstacles
- Any Steiner tree in the visibility graph is reach-aware

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can be computed in $O(k(\log k)^2)$ time, if l is constant.

We used a Dijkstra-Kruskal approach of Liu et al. [2009] with running time $\mathcal{O}(m\log m)$ for m edges.

Unblocked optimization

Rebuild subtrees whose bounding box is unblocked:

- Replace maximal subtrees by 1.5-approximation of RSMT
- Build subtrees for up to 9 terminals optimally using FLUTE

Unblocked optimization

Rebuild subtrees whose bounding box is unblocked:

- Replace maximal subtrees by 1.5-approximation of RSMT
- Build subtrees for up to 9 terminals optimally using FLUTE

Local optimizations:

Standard Benchmarks

Name	S	O	Best	Lengths				
				L = 0	1%	5%	10%	$ \infty$
RL01	5000	5000	481813	493372	486836	490658	491565	472780
RL02	9999	500	637753	638206	638151	638276	638612	634187
RL03	9999	100	640902	639495	639314	639195	638851	636566
RL04	10000	10	697125	694654	694654	691612	691612	691660
RL05	10000	0	728438	723102	723102	723102	723102	723102
RT01	10	500	2146	2283	2012	1817	1817	1817
RT02	50	500	45852	49500	46762	45772	45772	45747
RT03	100	500	7964	8380	8034	8092	8046	7697
RT04	100	1000	9693	10616	8160	7788	7788	7788
RT05	200	2000	51313	55507	45479	45581	46101	43099
IND1	10	32	604	629	629	609	609	609
IND2	10	43	9500	10600	10600	9100	9100	9100
IND3	10	50	600	678	678	600	587	587
IND4	25	79	1086	1160	1160	1137	1121	1092
IND5	33	71	1341	infeas.	infeas.	1364	1343	1312
Σ RT				3.62	4.13	2.56	2.56	1.29

Best: best published for L = 0 with relaxed definition of obstacles; opt. on RT, IND

IND5 (Standard Benchmark Instance)

LeonardTop obstacle-avoiding L = 0

LeonardTop reach-aware L = 1mm

LeonardTop obstacle-unaware $L = \infty$

		97 49	e na pe	11 12 12	
	ALC: NOT				
鮮白ーニー				- 444.9	
	Trans.				
	dial.			1111	
				anna in	11
		Sec. 1			
				ALC NO.	
		C FR			

AndreTop, 3899379 nets

L	Length	#inf.	CPU	Wall
0	562 032	0	11:23	5:45
0.5	535 453	0	21:47	7:21
1	469 175	0	15:22	6:21
2.5	440 680	0	10:17	5:54
∞	440 537	0	08:18	5:12

Choices of L and total net lengths reported in mm, running times in mm:ss using 8 threads. Lengths marked by * include infeasible nets with opens.

AlexTop, 2674754 nets						
L	Length	#inf.	CPU	Wall		
0	580 318*	1 955	21:58	6:10		
0.5	536 358*	1	24:52	6:29		
1	532 307	0	21:46	6:06		
2.5	530 284	0	17:58	5:55		
∞	529 301	0	07:07	4:38		

Choices of L and total net lengths reported in mm, running times in mm:ss using 8 threads. Lengths marked by * include infeasible nets with opens.

LeonardTop, 525 498 nets						
L	Length	#inf.	CPU	Wall		
0	201 127*	6 669	13:33	2:42		
0.5	249 067*	40	16:54	3:11		
1	246 862	0	17:41	3:24		
2.5	203 378	0	11:31	2:32		
∞	199 216	0	01:52	1:24		

Choices of L and total net lengths reported in mm, running times in mm:ss using 8 threads. Lengths marked by * include infeasible nets with opens.

Results on DIMACS Benchmarks

Some of our instances are part of the 11th DIMACS implementation challenge: http://dimacs11.cs.princeton.edu/home.html Organizers:

Instance	T	O	L^{\star}	Length			RT
				L = 0	$L = L^{\star}$	$L = \infty$	sec.
Bonn_23292_54	23292	54	2400	364338	363004	361726	1
Bonn_35574_158	35574	158	1500	746523	746495	735059	2
Bonn_46269_127	46269	127	1500	1071883	1071827	1068448	4
Bonn_108500_141	108500	141	4200	1973406	1964154	1957120	10
Bonn_129399_210	129399	210	1500	infeas.	2608227	2616871	14
Bonn_639639_382	639639	382	4200	3060914	3028456	3013106	99
Bonn_783352_175	783352	175	1200	1948056	1944546	1931964	126

All lengths scaled by 10^{-3} .

Steiner trees constructed by our algorithm can be used as initial solutions:

Timing
► Cong et al. [1992]
 Khuller et al. [1995]
► Held et al. [2013]

Routing

 Incorporated in BONNTOOLS (BONNROUTE GLOBAL) to generate starting solutions quickly for majority of nets