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Reach-Aware Steiner Trees

Definition (Reach-aware Steiner tree)

Input:

I terminals T ,

I rectilinear obstacles R,

I a reach length L ∈ [0,∞].

≤ L

A Steiner tree Y connecting T is reach-aware if the length of each
connected component in the intersection of Y with the interior of the
blocked area (

⋃
r∈R r)

◦ is bounded by L.

I All objects are considered to be in R2 with the `1-norm.

I This formulation does not depend on representation of blocked area,
therefore we will assume R to be a set of rectangles.
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Problem Formulation

Reach-aware Steiner tree problem

Find a reach-aware Steiner tree of minimum length.

Example

obstacle-avoiding
(L = 0)

reach-aware
(0 < L <∞)

obstacle-unaware
(L =∞)
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Problem Formulation

Reach-aware Steiner tree problem

Find a reach-aware Steiner tree of minimum length.

Previous Result

Müller-Hannemann and Peyer [2003]:

I Steiner tree algorithm on augmented Hanan grid

I 2-approximation with super-quadratic running time and space

I 2k
2k−1α-approximation for rectangles, where α is the approximation
ratio in graphs
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Main Result

Let k = |T |+ |R| denote the size of the input.

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of
terminals of size O(k2 log k) can be computed in O(k2 log k) time.

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can
be computed in O((k log k)2) time.

I If the number of corners of each rectilinear obstacle is bounded by a
constant, the running time is O(k(log k)2).

Stephan Held and Sophie Spirkl Reach-Aware Steiner Trees ISPD, March 30–April 2, 2014 5 / 24



Main Result

Let k = |T |+ |R| denote the size of the input.

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of
terminals of size O(k2 log k) can be computed in O(k2 log k) time.

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can
be computed in O((k log k)2) time.

I If the number of corners of each rectilinear obstacle is bounded by a
constant, the running time is O(k(log k)2).

Stephan Held and Sophie Spirkl Reach-Aware Steiner Trees ISPD, March 30–April 2, 2014 5 / 24



Reach-Aware Visibility Graph

We construct the reach-aware visibility graph with the following properties:

I There is a reach-aware shortest path between every pair of terminals.

I Every subset of the edge set is reach-aware.

Lemma

A minimum terminal spanning tree is a
2-approximation.
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Reach-Aware Visibility Graph

For L = 0, Clarkson et al. [1987] proved that a
graph containing shortest paths between all ter-
minals of size O(k log k) can be computed in
O(k(log k)2) time.

We generalized their construction.

Clarkson graph
Other previous results include:

I PTAS by Min et al. [2003]

I 2-approximations by Lin et al. [2008], Long et al. [2008], Liu et al.
[2009]

I Exact algorithm by Huang et al. [2013]
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Path Decomposition Lemma

The set of endpoints E contains all terminals and
obstacle corners.

The bounding box of two endpoints is empty, if it
intersects no other endpoint.

Endpoints

Lemma (Clarkson et al. [1987])

A shortest obstacle-avoiding path between two endpoints can be modified
s. t.

I the bounding box of two consecutive endpoints is empty, and

I its restriction to that bounding box is an `1-shortest path.

This modification preserves length and obstacle-avoidance.
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Path Decomposition Lemma

Goal

A shortest reach-aware path between two endpoints can be modified s. t.

I the bounding box of two consecutive endpoints is empty, and

I its restriction to that bounding box is an `1-shortest path.

This modification preserves length and reach-awareness.

I The lemma does not hold in the reach-aware case:
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Mirror Points

Definition

A mirror point (blue square) is the endpoint of an axis-
parallel connection across an obstacle at a non-convex cor-
ner (green disk).

Endpoints E

I From now on, we only consider the extended
set of endpoints E , which contains terminals,
obstacle corners and mirror points.
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Path Decomposition Lemma

Definition

For two points s and t, their closed bounding box is empty,
if it contains no endpoints except for s and t. s

t
q

not empty

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

I the bounding box of two consecutive endpoints is empty, and

I its restriction to that bounding box is an `1-shortest path.

This modification preserves length and reach-awareness.

Stephan Held and Sophie Spirkl Reach-Aware Steiner Trees ISPD, March 30–April 2, 2014 11 / 24



Path Decomposition Lemma

Definition

For two points s and t, their closed bounding box is empty,
if it contains no endpoints except for s and t. s

tq

still not empty

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

I the bounding box of two consecutive endpoints is empty, and

I its restriction to that bounding box is an `1-shortest path.

This modification preserves length and reach-awareness.

Stephan Held and Sophie Spirkl Reach-Aware Steiner Trees ISPD, March 30–April 2, 2014 11 / 24



Path Decomposition Lemma

Definition

For two points s and t, their closed bounding box is empty,
if it contains no endpoints except for s and t. s

t
q

empty

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

I the bounding box of two consecutive endpoints is empty, and

I its restriction to that bounding box is an `1-shortest path.

This modification preserves length and reach-awareness.

Stephan Held and Sophie Spirkl Reach-Aware Steiner Trees ISPD, March 30–April 2, 2014 11 / 24



Path Decomposition Lemma

Definition

For two points s and t, their closed bounding box is empty,
if it contains no endpoints except for s and t. s

t
q

still empty

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

I the bounding box of two consecutive endpoints is empty, and

I its restriction to that bounding box is an `1-shortest path.

This modification preserves length and reach-awareness.

Stephan Held and Sophie Spirkl Reach-Aware Steiner Trees ISPD, March 30–April 2, 2014 11 / 24



Path Decomposition Lemma

Definition

For two points s and t, their closed bounding box is empty,
if it contains no endpoints except for s and t. s

t
q

still empty

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

I the bounding box of two consecutive endpoints is empty, and

I its restriction to that bounding box is an `1-shortest path.

This modification preserves length and reach-awareness.

Stephan Held and Sophie Spirkl Reach-Aware Steiner Trees ISPD, March 30–April 2, 2014 11 / 24



Path Decomposition Lemma

Lemma (Held and S. [2014])

A shortest reach-aware path between two endpoints can be modified s. t.

I the bounding box of two consecutive endpoints is empty, and

I its restriction to that bounding box is an `1-shortest path.

This modification preserves length and reach-awareness.

I This fixes the earlier example:
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Medians

Algorithm

I Take a set of points

I Insert vertical line at
median of x-coordinates

I Connect all points to
median line

I Proceed recursively left
and right

I Size O(k log k)
I Contains shortest paths

between terminals
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Medians for Reach-Aware Visibility Graph

I Insert medians lines recursively

I Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 1:
median unblocked

Case 2a:
blocked, can cross

Case 2b:
cannot cross
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Medians for Reach-Aware Visibility Graph

I Insert medians lines recursively

I Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 1:
median unblocked

Case 1
I Mirror points ensure that if unblocked for

one point, then for both

I Add path as shown if reach-aware

I If `1-shortest reach-aware path exists,
then this path is one
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Medians for Reach-Aware Visibility Graph

I Insert medians lines recursively

I Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 2a:
blocked, can cross

Case 2a
I If connection to median reach-aware, add
pq and qr, if possible

I Connect points along obstacle boundaries

q rp
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Medians for Reach-Aware Visibility Graph

I Insert medians lines recursively

I Connect endpoints on opposite sides by shortest path

If the bounding box of the two endpoints is empty, 3 cases can occur:

Case 2b:
cannot cross

Case 2b
I Pairs of non-convex obstacle corners of

the same obstacle

I Connect diagonally

There are few such connections in practice.
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Example

Algorithm

I Instance

I Collect endpoints and compute
mirror points

I Insert medians recursively

I Connect points along obstacle
boundaries

I Extract Steiner tree
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Analysis of Visibility Graph Construction

Let k = |T |+ |R| denote the size of the input, l the maximum number of
corners of an obstacle.

I There are O(k) endpoints in E
I Each endpoint is connected to O(log k) medians

I Including diagonal edges, such a connection increases the graph size
by O(l)

Theorem (Held and S. [2014])

A graph containing shortest reach-aware paths between all pairs of
terminals of size O(kl log k) can be computed in O(k log k · (l + log k))
time.
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Analysis of Steiner Tree Construction

Let k = |T |+ |R| denote the size of the input, l the maximum number of
corners of an obstacle.

I The visibility graph contains reach-aware shortest paths between all
terminals

I There are no Steiner points on obstacles

I Any Steiner tree in the visibility graph is reach-aware

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can
be computed in O(kl log k(log l + log k)) time.

We used a Dijkstra-Kruskal approach of Liu et al. [2009] with running time
O(m logm) for m edges.
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corners of an obstacle.

I The visibility graph contains reach-aware shortest paths between all
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I There are no Steiner points on obstacles

I Any Steiner tree in the visibility graph is reach-aware

Corollary (Held and S. [2014])

A 2-approximation for the minimum reach-aware Steiner tree problem can
be computed in O(k(log k)2) time, if l is constant.

We used a Dijkstra-Kruskal approach of Liu et al. [2009] with running time
O(m logm) for m edges.
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Post-Optimization

Unblocked optimization

Rebuild subtrees whose bounding box is unblocked:

I Replace maximal subtrees by 1.5-approximation of RSMT

I Build subtrees for up to 9 terminals optimally using FLUTE

I Local optimizations:

Flip L’s Shift segments
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Standard Benchmarks

Name |S| |O| Best Lengths
L = 0 1% 5% 10% ∞

RL01 5000 5000 481813 493372 486836 490658 491565 472780
RL02 9999 500 637753 638206 638151 638276 638612 634187
RL03 9999 100 640902 639495 639314 639195 638851 636566
RL04 10000 10 697125 694654 694654 691612 691612 691660
RL05 10000 0 728438 723102 723102 723102 723102 723102

RT01 10 500 2146 2283 2012 1817 1817 1817
RT02 50 500 45852 49500 46762 45772 45772 45747
RT03 100 500 7964 8380 8034 8092 8046 7697
RT04 100 1000 9693 10616 8160 7788 7788 7788
RT05 200 2000 51313 55507 45479 45581 46101 43099

IND1 10 32 604 629 629 609 609 609
IND2 10 43 9500 10600 10600 9100 9100 9100
IND3 10 50 600 678 678 600 587 587
IND4 25 79 1086 1160 1160 1137 1121 1092
IND5 33 71 1341 infeas. infeas. 1364 1343 1312

Σ RT 3.62 4.13 2.56 2.56 1.29

Best: best published for L = 0 with relaxed definition of obstacles; opt. on RT, IND

Stephan Held and Sophie Spirkl Reach-Aware Steiner Trees ISPD, March 30–April 2, 2014 19 / 24



IND5 (Standard Benchmark Instance)

L = 0, infeasible L = 10, length = 1364

L = 50, length = 1343 L =∞, length = 1312
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Results on Chips

LeonardTop
obstacle-avoiding

L = 0

LeonardTop
reach-aware
L = 1mm

LeonardTop
obstacle-unaware

L =∞
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Results on Chips

AndreTop, 3 899 379 nets
L Length #inf. CPU Wall
0 562 032 0 11:23 5:45
0.5 535 453 0 21:47 7:21
1 469 175 0 15:22 6:21
2.5 440 680 0 10:17 5:54
∞ 440 537 0 08:18 5:12

Choices of L and total net lengths reported in mm, running times in mm:ss
using 8 threads. Lengths marked by ? include infeasible nets with opens.
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Results on Chips

AlexTop, 2 674 754 nets
L Length #inf. CPU Wall
0 580 318? 1 955 21:58 6:10
0.5 536 358? 1 24:52 6:29
1 532 307 0 21:46 6:06
2.5 530 284 0 17:58 5:55
∞ 529 301 0 07:07 4:38

Choices of L and total net lengths reported in mm, running times in mm:ss
using 8 threads. Lengths marked by ? include infeasible nets with opens.
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Results on Chips

LeonardTop, 525 498 nets
L Length #inf. CPU Wall
0 201 127? 6 669 13:33 2:42
0.5 249 067? 40 16:54 3:11
1 246 862 0 17:41 3:24
2.5 203 378 0 11:31 2:32
∞ 199 216 0 01:52 1:24

Choices of L and total net lengths reported in mm, running times in mm:ss
using 8 threads. Lengths marked by ? include infeasible nets with opens.
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Results on DIMACS Benchmarks

Some of our instances are part of the
11th DIMACS implementation challenge:
http://dimacs11.cs.princeton.edu/home.html

Organizers:

D. Johnson, T. Koch, R.F. Werneck, M. Zachariasen

Instance |T | |O| L? Length RT
L = 0 L = L? L = ∞ sec.

Bonn 23292 54 23292 54 2400 364338 363004 361726 1
Bonn 35574 158 35574 158 1500 746523 746495 735059 2
Bonn 46269 127 46269 127 1500 1071883 1071827 1068448 4
Bonn 108500 141 108500 141 4200 1973406 1964154 1957120 10
Bonn 129399 210 129399 210 1500 infeas. 2608227 2616871 14
Bonn 639639 382 639639 382 4200 3060914 3028456 3013106 99
Bonn 783352 175 783352 175 1200 1948056 1944546 1931964 126

All lengths scaled by 10−3.
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Applications

Steiner trees constructed by our algorithm can be used as initial solutions:

Timing

I Cong et al. [1992]

I Khuller et al. [1995]

I Held et al. [2013]

Routing

I Incorporated in BonnTools (BonnRoute Global) to generate
starting solutions quickly for majority of nets
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