Synthesis of Low Power Clock Trees for Handling Power-supply Variations

Shashank Bujimalla and Cheng-Kok Koh
School of Electrical and Computer Engineering
Purdue University
Outline

• Clock distribution networks and challenges
• Problem definition
• Parameters affecting clock skew in clock trees
 • Analyze the parameters, variations and their effect on clock skew.
 • Propose techniques to reduce the clock skew.
• Our approach
• Experimental setup and Results
• Conclusions
Clock distribution networks

- **Challenges of clock network synthesis**
 - Satisfy clock skew constraints in the presence of variations.
 - Reduce the power dissipated. (Metric: Capacitance.)

- **Popular structures**
 - Clock trees - Relatively low variation-tolerance, Low capacitance.
 - Clock meshes - High variation-tolerance, High capacitance.
 - Hybrid (mesh + tree, tree + cross-links)

- **Focus of our work: Clock tree structures**
 - Analyze the parameters and variations affecting clock skew.
 - Propose techniques to reduce the clock skew.
Problem definition

Terminology

• Local sink pairs
 • Sink pairs closer than a specified distance (L).
 L : Local skew distance.

• Local clock skew (LCS)
 • Clock skew between any local sink pair.

• Maximum local clock skew (MLCS)
 • Many such local sink pairs.
 • Maximum LCS among them.
Problem definition
Based on ISPD 2010 contest problem

- **Given**
 - Clock source, sink and blockage locations.
 - Local skew distance, L.
 - MLCS limit.
 - Slew limit.
 - Inverter and wire library.
 - Power-supply and wire-width variations (Uniform distribution).

- **Construct a low capacitance (power) clock tree**
 - **Satisfy slew constraint:** Signal slew < Slew limit.
 - **Satisfy blockage constraint:** Inverters cannot be placed over blockages.
 - **Satisfy MLCS constraint:** 95^{th} percentile of MLCS, $MLCS_{95\%} < \text{MLCS limit}$.
Parameters affecting clock skew

- **Clock skew parameters**
 - Number of sinks, N.
 - Number of buffer levels, B.
 - Delay variation per buffer stage, σ_0.
 - Buffer stage = Buffer + Interconnect it drives.
 - σ_0 is the standard deviation of delay per buffer stage.
Parameters affecting clock skew

Clock skew under variations

- **Clock tree** T_D
 - Identical path delays from source to sinks.
 - Normal distribution with same mean and variance.
 - Possible overlapping paths.
 - Clock skew is R_D.

- **Clock tree** T_I *(Hypothetical)*
 - Similar to T_D.
 - Assume: No overlapping paths.
 - Clock skew is R_I.

- $P(R_D < z) \geq P(R_I < z)$
 - $E(R_I) \geq E(R_D)$ (from [4] and [5])

- $P(R_D < z) \geq P(R_I < z)$
 - $R_{I, 95\%} \geq R_{D, 95\%}$

\[
R_{D, 95\%} = \alpha \cdot R_{I, 95\%} \quad (where \ 0 \leq \alpha \leq 1)
\]

Parameters affecting clock skew

Clock skew under variations

- \(R_{D, 95\%} = \alpha \cdot R_{I, 95\%} \) (where \(0 \leq \alpha \leq 1 \))
 - Asymptotic formulae for \(E(R_i) \) and \(Var(R_i) \).
 - For given \(N, B \) and \(\sigma_0 \).
 - Sample set large => Assume normal distribution for \(R_i \).
 \[R_{I, 95\%} \sim E(R_i) + 2 \cdot \sqrt{Var(R_i)} \]

- \(R_{D, 95\%} \sim \alpha \cdot [E(R_i) + 2 \cdot \sqrt{Var(R_i)}] \)

- **Formula for 95th percentile of clock skew (R) for general clock tree.**
 - Include nominal clock skew (NCS).
 \[R_{95\%} \sim NCS + \alpha \cdot [E(R_i) + 2 \cdot \sqrt{Var(R_i)}] \]
 - Empirically estimate \(\alpha \).
Parameters affecting MLCS

• **Wire-width variations (vs) Power-supply variations**
 - Low slew => Small DC-connected subtrees.
 - Effect of wire variations relatively small compared to power-supply variations.

• **Our focus: Power-supply variations**
 - Delay variation per buffer stage, σ_0:
 - σ_0 of buffer stage $\sim \sigma_0$ of buffer.
Parameters affecting MLCS

- **LCS parameters**
 - **Number of buffer levels, \(B \):**
 - Subtree of the NCA (nearest common ancestor) of local sink pair.
 - **Number of sinks, \(N \):**
 - Subtree of the NCA of local sink pair.
 - Number of level 1 buffers (bottom-up from sinks).

- **MLCS parameters**
 - \(\sigma_0 \), \(N \) and \(B \) values that give the highest 95% LCS among all local sink pairs.
Parameters affecting MLCS

Power-supply variations

- **ISPD 2010 contest**
 - Inverter modeled as a single point.
 - Many inverters can be placed at a single location.
 - Parallel inverters to increase the drive strength.
 - Buffers.

- **Types of Monte-Carlo (MC) simulations**
 - **ISPD MC simulations.** (ISPD problem.)
 - Inverters placed at same location could get different voltages.
 - Same as the contest simulations.
 - **SLSV MC simulations.** (SLSV problem.)
 - Inverters placed at same location get identical voltages.
 - SLSV : Single Location Single Voltage.
Observations on σ_0
Key Technique - ISPD problem

- **Use parallel inverters to reduce σ_0:**

 Note: Short circuit power dissipation could increase.
 - Not captured if only capacitance is used as metric for power dissipation.

![Graph 1: Probability vs. Delay for 1 inverter](image1)

![Graph 2: Probability vs. Delay for 30 parallel inverters](image2)
Observations on σ_0

Key Techniques - SLSV problem

- Buffers (chain of 2 inverters) have lower σ_0 than inverters.
 - Inverters of a buffer (chain of 2 inverters) get identical power-supply voltages.
 - Use buffers (chain of 2 inverters).

- Lower buffer input slew => Lower σ_0.
 - Try to maintain low slew in the clock tree.

- No significant change in σ_0 for different buffer sizes.
 - At low input slews.
 - For loads at which buffers are inserted to avoid slew constraint violations.

In our work: A single buffer size is used in entire clock tree (for simplicity).
Observations on N and B

Key Techniques

• However, buffer size determines N and B.
 • ISPD and SLSV problem.

• Lower values of N and B \Rightarrow Lower $MLCS_{95\%}$.
 • Difficult to estimate the buffer size that gives lower N and B.
 - Non-uniform sink distribution.
 - Blockages.
 - Drive strength (vs) Upstream capacitance presented.

• We perform a linear search to find the desired buffer size.
Our approach

Given a buffer size

- Construct low nominal skew clock tree
 - Deferred Merge Embedding (DME) algorithm
 - Merging strategy
 - Buffer insertion strategy
 - Avoid slew and blockage constraint violations
 - Buffer modeling

- Use the formula for $R_{95\%}$ to estimate $MLCS_{95\%}$
Our approach
Buffer modeling

 - Iterative approach to model buffer.

- Use NGSPICE for buffer modeling.
 - Stringent MLCS constraints.

Our approach

Two stages

Stage 1: Perform a linear search for the desired buffer size

Given a buffer size

- Construct low nominal skew tree (DME algorithm)
 - Merging
 - Buffer insertion strategy
 - Avoid slew and blockage constraint violations
- Buffer modeling (Use fast buffer modeling)
- Use the formula for $R_{95\%}$ to estimate $MLCS_{95\%}$

Stage 2: Construct low nominal skew tree

(use buffer size determined from stage 1)

- Similar to above EXCEPT
 - Buffer modeling (use NGSPICE)
 - Fine tune nominal clock skew (use NGSPICE)

Reason:
Using NGSPICE while searching for desired buffer size - Expensive!
Experimental setup

• **Benchmark circuits**
 - ISPD 2010 contest benchmark circuits [7].
 - More than 1000 sinks. (MLCS constraint of 7.5ps or less.)
 - Based on Intel and IBM microprocessor designs (scaled to 45nm).

• **Variations**
 - Power-supply variations: ±7.5%.
 - Wire-width variations: ± 5%.

• **Power-supply variation (±7.5%)**
 - Only V_{dd}.
 - We present the results for these simulations.
 - Share between V_{dd} and V_{ss}.
 - Similar or lower $MLCS_{95\%}$.

Results

Using parallel inverters to solve ISPD problem

<table>
<thead>
<tr>
<th>BM</th>
<th>MLCS limit (ps)</th>
<th>nom</th>
<th>ISPD MC</th>
<th>SLSV MC</th>
<th>Cap (fF)</th>
<th>Runtime (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>max</td>
<td>95%</td>
<td>mean</td>
</tr>
<tr>
<td>01</td>
<td>7.50</td>
<td>2.13</td>
<td>4.01</td>
<td>7.45</td>
<td>5.79</td>
<td>17.47</td>
</tr>
<tr>
<td>02</td>
<td>7.50</td>
<td>2.67</td>
<td>4.98</td>
<td>7.50</td>
<td>6.69</td>
<td>20.29</td>
</tr>
<tr>
<td>03</td>
<td>4.999</td>
<td>1.41</td>
<td>2.44</td>
<td>4.24</td>
<td>3.46</td>
<td>10.40</td>
</tr>
<tr>
<td>04</td>
<td>7.50</td>
<td>1.54</td>
<td>2.84</td>
<td>4.21</td>
<td>3.79</td>
<td>12.18</td>
</tr>
<tr>
<td>05</td>
<td>7.50</td>
<td>1.99</td>
<td>2.72</td>
<td>4.69</td>
<td>3.68</td>
<td>8.94</td>
</tr>
<tr>
<td>06</td>
<td>7.50</td>
<td>2.32</td>
<td>3.03</td>
<td>4.69</td>
<td>4.01</td>
<td>11.19</td>
</tr>
<tr>
<td>07</td>
<td>7.50</td>
<td>2.83</td>
<td>3.81</td>
<td>5.91</td>
<td>5.65</td>
<td>12.12</td>
</tr>
<tr>
<td>08</td>
<td>7.50</td>
<td>1.73</td>
<td>2.89</td>
<td>5.13</td>
<td>4.24</td>
<td>12.12</td>
</tr>
</tbody>
</table>
Results
Using buffers (2 layers of parallel inverters) to solve SLSV problem

<table>
<thead>
<tr>
<th>BM</th>
<th>MLCS limit (ps)</th>
<th>nom</th>
<th>ISPD MC</th>
<th>SLSV MC</th>
<th>Cap (fF)</th>
<th>Runtime (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>max</td>
<td>95%</td>
<td>mean</td>
</tr>
<tr>
<td>01</td>
<td>7.50</td>
<td>1.47</td>
<td>4.21</td>
<td>8.60</td>
<td>5.58</td>
<td>6.96</td>
</tr>
<tr>
<td>02</td>
<td>7.50</td>
<td>1.42</td>
<td>4.60</td>
<td>6.85</td>
<td>6.27</td>
<td>7.99</td>
</tr>
<tr>
<td>03</td>
<td>4.999</td>
<td>0.64</td>
<td>1.96</td>
<td>3.42</td>
<td>2.96</td>
<td>3.47</td>
</tr>
<tr>
<td>04</td>
<td>7.50</td>
<td>0.81</td>
<td>3.38</td>
<td>7.34</td>
<td>5.69</td>
<td>5.27</td>
</tr>
<tr>
<td>05</td>
<td>7.50</td>
<td>0.81</td>
<td>2.32</td>
<td>5.27</td>
<td>3.67</td>
<td>3.64</td>
</tr>
<tr>
<td>06</td>
<td>7.50</td>
<td>0.66</td>
<td>2.80</td>
<td>5.94</td>
<td>4.58</td>
<td>4.25</td>
</tr>
<tr>
<td>07</td>
<td>7.50</td>
<td>1.09</td>
<td>3.20</td>
<td>6.29</td>
<td>4.91</td>
<td>5.03</td>
</tr>
<tr>
<td>08</td>
<td>7.50</td>
<td>0.94</td>
<td>3.10</td>
<td>5.29</td>
<td>4.83</td>
<td>4.60</td>
</tr>
</tbody>
</table>
Results

Using parallel inverters to solve ISPD problem
500 MC simulations

<table>
<thead>
<tr>
<th>BM</th>
<th>MLCS limit (ps)</th>
<th>MLCS (ps)</th>
<th>Cap (fF)</th>
<th>Runtime (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ISPD MC</td>
<td>SLSV MC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mean</td>
<td>max</td>
<td>95%</td>
</tr>
<tr>
<td>01</td>
<td>7.50</td>
<td>2.13</td>
<td>4.21</td>
<td>7.21</td>
</tr>
<tr>
<td>02</td>
<td>7.50</td>
<td>2.67</td>
<td>5.12</td>
<td>7.81</td>
</tr>
<tr>
<td>03</td>
<td>4.999</td>
<td>1.41</td>
<td>2.56</td>
<td>5.21</td>
</tr>
<tr>
<td>04</td>
<td>7.50</td>
<td>1.54</td>
<td>2.93</td>
<td>5.18</td>
</tr>
<tr>
<td>05</td>
<td>7.50</td>
<td>1.99</td>
<td>2.67</td>
<td>4.47</td>
</tr>
<tr>
<td>06</td>
<td>7.50</td>
<td>2.32</td>
<td>3.10</td>
<td>5.06</td>
</tr>
<tr>
<td>07</td>
<td>7.50</td>
<td>2.83</td>
<td>3.60</td>
<td>6.28</td>
</tr>
<tr>
<td>08</td>
<td>7.50</td>
<td>1.73</td>
<td>2.79</td>
<td>5.32</td>
</tr>
</tbody>
</table>
Results

Using buffers (2 layers of parallel inverters) to solve SLSV problem
500 MC simulations

<table>
<thead>
<tr>
<th>BM</th>
<th>MLCS limit (ps)</th>
<th>ISPD MC</th>
<th>SLSV MC</th>
<th>Cap (fF)</th>
<th>Runtime (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nom</td>
<td></td>
<td>mean</td>
<td>max</td>
</tr>
<tr>
<td>01</td>
<td>7.50</td>
<td>1.47</td>
<td>4.65</td>
<td>8.87</td>
<td>6.86</td>
</tr>
<tr>
<td>02</td>
<td>7.50</td>
<td>1.42</td>
<td>4.95</td>
<td>10.89</td>
<td>6.70</td>
</tr>
<tr>
<td>03</td>
<td>4.999</td>
<td>0.64</td>
<td>1.93</td>
<td>4.30</td>
<td>3.09</td>
</tr>
<tr>
<td>04</td>
<td>7.50</td>
<td>0.81</td>
<td>3.44</td>
<td>7.54</td>
<td>5.47</td>
</tr>
<tr>
<td>05</td>
<td>7.50</td>
<td>0.81</td>
<td>2.42</td>
<td>5.98</td>
<td>3.91</td>
</tr>
<tr>
<td>06</td>
<td>7.50</td>
<td>0.66</td>
<td>2.70</td>
<td>5.70</td>
<td>4.49</td>
</tr>
<tr>
<td>07</td>
<td>7.50</td>
<td>1.09</td>
<td>3.30</td>
<td>8.90</td>
<td>5.72</td>
</tr>
<tr>
<td>08</td>
<td>7.50</td>
<td>0.94</td>
<td>3.05</td>
<td>7.34</td>
<td>4.91</td>
</tr>
</tbody>
</table>
Results
Comparison of ISPD MC using inverters

 - Tree structure.
 - Best results among the top three teams.

- On an average: Cap of our work = 1.00, Cap of [1] = 1.22x.
Results

Comparison of ISPD MC using inverters

 - Tree + cross-links structure.
 - Use inverters.

- On an average: Cap of our work = 1.00, Cap of [3] = 0.79x.
Results
Comparison of ISPD MC using buffers

 - Tree + cross-links structure.
 - Use buffers.
- On an average: Cap of our work = 1.00, Cap of [3] = 0.83x.
Results
Comparison of SLSV MC using buffers

 - Mixed tree-mesh structure.
 - Note: They use single buffer at any location.

- On an average: Cap of our work = 1.00, Cap of [2] = 2.33x.
Conclusions

• **Our contributions**
 - Identified, analyzed parameters that have high impact on MLCS.
 - Quick estimate of MLCS using these parameters.
 - Avoid expensive MC simulations.
 - Simple two-stage technique to meet MLCS constraints.

• **Clock tree structure**
 - Can handle stringent MLCS constraints for most of the contest benchmarks.
 - Analysis of the variations
 - Helps to check if clock tree structures satisfy skew constraints.
Thank you